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A Review, of Near-Wall Similarity 
Models in Three-Dimensional 
Turbulent Boundary Layers 
Eleven near-wall similarity models for three-dimensional turbulent boundary layers 
which have been identified in the literature are reviewed. Each model summary 
includes a brief review of its derivation, discusses limitations in the derivation, 
estimates the applicable y+ range, and compares differences among the models. 
This review of three-dimensional similarity models was developed as part of a larger 
study which tests the validity of ten of these different models by comparison with 
experimental data which includes the direct and simultaneous measurement of the 
local wall shear stress direction and magnitude in a three-dimensional turbulent 
flow. A direct force measurement of local wall shear stress is necessary to test the 
local wall shear-shear velocity relationship, i0 = pq*2, generally assumed in three-
dimensional flows. This review is necessary to acquaint the reader with the 
similarities and differences among the models tested in companion papers since 
differences among some of the models are significant, particularly in the coordinate 
systems of the vector models. 

Introduction 

Near-wall similarity refers to the experimentally determined 
"sameness" of velocity profiles in the wall region of a broad 
class of turbulent boundary layer flows when these are plotted 
in suitably nondimensionalized coordinates. For two-
dimensional turbulent boundary layers1 the concept of near-
wall similarity is well accepted and is reviewed in Pierce, 
McAllister, and Tennant [1]. 

For a large portion of the near-wall similarity region where 
measurements can usually be made with ease (and accuracy) 
in a 2DTBL, a generally accepted form of the law of the wall 
is written as 

u+ = —In y+ +C 
K 

(1) 

where«+ =u/u*,yf = yu*/pandu* =^JTo7p. Unlike a rig
orous mathematical similarity analysis, K and C are ex
perimentally determined constants (that change with 
roughness and suction/blowing) and sometimes appear to 
have at least a weak but not well defined dependence on other 
variables. Apparent systematic variations in K and C are often 
within the experimental uncertainty of the data itself and this 
causes difficulty in fixing the universality of these two 
parameters and thier possible dependence on other variables. 
A discussion of the university of the constant appears in 
reference [1]. Different forms of this equation have been 
proposed to account for pressure gradients [2, 3, 4, 5], 

The short forms 2DBTL and 3DTBL are used as convenient for the two-
and three-dimensional turbulent boundary layers. 

Contributed by the Fluids Engineering Division for publication in the 
JOURNAL OP FLUIDS ENGINEERING. Manuscript received by the Fluids 
Engineering Division, May 1982. 

transpiration blowing [6], very small y + values [6, 7], rough 
walls [8, 9, 10], and compressible flow [11], 

For the three-dimensional case the concept of near-wall 
similarity is not so well established. To date, 11 models for the 
velocity profile in the near-wall region have been found in the 
literature. Six of these models are simpler scalar models where 
only one component or the total scalar velocity value is used. 
The remaining five models recognize in some more elaborate 
way the vector character of the 3DTBL velocity profile where 
the vector can turn continuously down to the wall. 

The direct force measurement of local wall shear stress is an 
absolute requirement in any serious study of the near-wall 
similarity question in three-dimensional flows. This is an 
essential requirement since the several near-wall similarity 
models proposed in the literature for the 3DTBL case all 
require the local wall shear stress (or some component of it) in 
the necessary nondimensionalizing of experimental data. 
While the use of indirect wall shear devices has been reported 
in some 3DTBL flows (e.g., see references [12-19]), all such 
devices reported to date have used only two-dimensional 
calibrations in three-dimensional flows. This, in effect, 
assumes a priori and without proof the validity of the two-
dimensional near-wall similarity law in three-dimensional 
flow-and this is wholly unacceptable in any attempt at a 
definitive study of near-wall similarity in a three-dimensional 
flow. The use of a two-dimensional calibration in a three-
dimensional flow presumes far more than is acceptable in a 
near-wall similarity study in 3DTBL flows. 

In summary, in the 2DTBL case near-wall similarity 
concerns itself with the experimentally determined sameness 
of the flow from the wall itself. This excludes the large outer 

Journal of Fluids Engineering SEPTEMBER 1983, Vol. 105/251 
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•£ Freestream 
£ Streamline 

Tangent to Freestream 

Streamline 

Fig. 1(a) Typical pressure-driven three-dimensional boundary layer 
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Fig. 1(b) Typical polar plot used to construct the six simpler similarity 
models 

portion of the velocity profile where the wake character is 
strong. Practical experimental difficulties in making accurate 
and repeatable measurements very close to the wall suggest 
the exclusion of the very near-wall data in two-dimensional 
near-wall similarity studies. Since all the three-dimensional 
near-wall similarity models give the two-dimensional 
logarithmic form of the law of the wall in the limit of 
vanishing secondary flow and since in the two-dimensional 
case an approximate y+ range of 50 to 300 is suggested for 
modest pressure gradient flows, it would seem reasonable to 
focus attention on a similar interval in a first look at the 
existence of near-wall similarity in the three-dimensional case. 

Review of Similarity Models 

Three-Dimensional Flows. 

/ . Scalar Models. The first six models consider only one 
velocity or velocity component and are described as scalar 
models. For a three-dimensional turbulent boundary layer an 
equivalent scalar velocity is used in the two-dimensional near-
wall similarity law. The logarithmic form of equation (1) 
would collapse the velocity profiles, with 

Model 

Coles [20] 

Johnston [22] 

Hournung and 
Joubert [23] 

Pierce and 
Krommenhoek [12] 

Prahlad [13] 

East and 
Hoxey [14] 

Table I 
^equivalent 

q cos 7 

M/COS C*O 

u 

a 

#/cosai 

(2) 

a, = sin-1((£V*i9*)sin/3,)-/31 

ft = -tan-'CSj/fii), #1=19.45 

U0 = a "working section reference velocity'' 

81,62 = streamwise and transverse displacement thickness 

q+ = ^equivalent = J_ j n ^! + C 

q* K v 

where q* and the various equivalent velocity terms are defined 
in Table 1 for the six models. Unlike the two-dimensional 
case, there is no body of experimental evidence relating the 
wall shear stress to the shear velocity to provide an empirical 
basis for this identification. At this point one simply seeks a 
suitable nondimensionalizing constant to collapse a velocity 
profile - that such a nondimensionalizing constant is uniquely 
identified with the local wall shear stress is yet to be 
established. At least for small deviations from two-
dimensional flows, this seems to be a reasonable approach, 
but the assertion that q* = \lr0/p is without vertification, and 
it should be noted that a parameter q* might collapse the 
velocity profile without being related to the wall shear stress. 
It is this identification of the nondimensionalizing shear 
velocity with the wall shear stress which is the critical 
assumption in near-wall similarity in the 3DTBL. This 
identification is empirical and it must be experimentally 
demonstrated that the local wall shear stress is in fact iden
tified with the nondimensionalizing shear velocity. The 
symbol q* is used to distinguish the shear velocity in the 
3DTBL from its u* counterpart in the 2DTBL case. 

Figure 1(a) shows a sketch of a three-dimensional turbulent 
boundary layer velocity profile skewed in one direction only 
and Fig. 1(b) shows a typical polar plot of such a velocity 
profile. Both notation and the coordinate systems are also 
shown. Note that the approximate triangular shape of the 
polar plot presumes a near-wall collateral flow. Such a polar 
plot is closely identified with the six scalar similarity models. 
Note that Fig. 1 is valid only for profiles where the boundary 
layer skew is unilateral or in one direction only. 

The first of the simpler scalar models was introduced by 

Nomenclature 

u* = V^Tp for 2DTBL; 

C = law of the wall constant 
hi = streamwise metric coefficient 
p = pressure 
q = velocity in the xz or £f plane 
u = streamwise velocity component 

W{ = velocity component in the local 
wall shear direction 

u* = u/u* oxu/q* 

q* 

w 

wr 

w + 

V Tostreamwise/P for 3 D T B L 

= Vr0 /p for 3DTBL 

= transverse velocity component 
in streamwise coordinates 

= velocity component normal to 
the local wall shear direction 

= w/q* 

y 
y+ 

K 

i 
f 

p 
rn 

V 

distance from wall 
u* y/v or q* y/v or q% y/v 
law of the wall constant 
wall shear coordinate direction 
transverse coordinate normal to 
the local wall shear direction 
density 
wall shear stress 
kinematic viscosity 
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Coles in 1956 [20] who suggested that the velocity vector, 
q = u + w, could be expressed as the sum of a wall, qlv, and a 
wake, qwake. component. He reasoned that: (1) near the wall 
the wake component would be small, (2) that the direction of 
the mean flow near the surface is also the direction of the wall 
shear, T0, as well as the direction of the wall velocity com
ponent, and (3) that the wall velocity component in the 
direction of the wall shear stress could be described by the 
two-dimensional logarithmic similarity law. 

Coles used the data of Kuethe, McKee, and Curry [21] on a 
swept airfoil to test his model. Though the velocity profiles 
seemed to be fairly well represented by Coles' model, no 
direct or indirect measurements of wall shear stress were 
included. No y + range was suggested for this three-
dimensional model but a range similar to the two-dimensional 
log law would seem a reasonable first estimate. 

In 1960 Johnston [22] introduced a second similarity model 
by noting the existence of an apparently collateral region very 
near the wall. He proposed that the angle which the near-wall 
velocity vector has with respect to the freestream approaches 
the angle a0 in a presumed collateral region, where a0 is the 
limiting wall streamline angle and coincident with the wall 
shear direction. 

When q is along a0, u/cos a0 is equal to the physically real 
q. When q is not along a0, u/cos a0 gives a fictitious velocity. 
Johnston based his model on the experimental measurements 
of Kuethe et al. [21] discussed previously, Gruschwitz who 
gave data in a turning passage of a rectangular duct, and his 
own study over a flat wall bounding a two-dimensional air jet 
impinging against a perpendicular back wall. He noted from 
his data that the applicability of equation (1) would be from 
the outer portion of Region I into the inner portion of Region 
II of the polar plot in Fig. 1(6). It is difficult to specify a 
specific y+ range for this model since Johnston's data 
suggested Region I was within the viscous sublayer while 
Hornung and Joubert [23] have since shown Region I to have 
y + ranges which were well outside the viscous sublayer. 

Both Cole's and Johnston's models suggest that in at least a 
thin layer the mean flow near the surface is in the same 
direction as the wall shear stress. Much of the early data 
plotted as the polar plot in Fig. 1(b) shows two, three, or more 
velocity points in the very near-wall region which appear to 
have the same direction, suggesting the existence of a 
collateral near-wall flow. The very careful measurements of 
Rogers and Head [24] and Hebbar and Melnik [25] using very 
small instrumentation and emphasizing spatial resolution 
showed no region of near-wall collateral flow. In addition, 
Pierce and East [26] and Klinksiek and Pierce [27] have 
demonstrated with a finite difference solution to a pressure-
driven 3DTBL flow where the viscous stresses were retained in 
the motion equations that no near-wall collateral flow was 
predicted in a computer solution. Since only the viscous 
equations were being solved in the very near-wall region where 
the turbulent stresses vanish, the Reynolds stress model used 
is immaterial and the existence of a collateral region appears 
to be inconsistent with the governing equations. Prahlad [28] 
also presented work supporting these computer results where 
he noted local streamline turning in the immediate neigh
borhood of the wall which "suggests the possibility of a fairly 
large variation in the flow direction within the viscous 
sublayer." These results cloud the question of the accurate 
measurement of the limiting wall streamline direction by 
surface type probes. 

In 1963 Hornung and Joubert [23] presented the results of a 
study of the flow around a circular cylinder with trailing edge 
standing on a plate. Their measurements seemed to confirm 
Johnston's polar plot, but in contrast to Johnston's 
assumption, they found the polar plot peak did not 
necessarily lie within the viscous sublayer. Hornung and 

Joubert suggested that the streamwise profile follows the two-
dimensional logarithmic similarity law, nondimensionalizing 
with a shear velocity based on the local wall shear stress as in 
the earlier two cases. From their work (their Fig. 15) it ap
pears that the equivalent velocity is the streamwise velocity 
component. They indicated that their model applied "up to 
the point where the boundary layer becomes yawed," usually 
to.y+ <150. 

A fourth model is a similar model of unknown origin first 
reported by Pierce and Krommenhoek [12] in 1968. In this 
case the streamwise component of the three-dimensional 
velocity profile was assumed to follow the two-dimensional 
similarity law with a shear velocity defined from a component 
of the wall shear stress in the streamwise direction. 

In 1968 Prahlad [13] introduced a fifth scalar similarity 
model2 which assumes that the equivalent velocity is the 
magnitude of the skewed velocity vector. Prahlad used his 
own data to verify his model and found good agreement in a 
two-dimensional law of the wall coordinate system. For 
adverse or positive pressure gradients the y+ range of 
similarity was approximately 20 to 300, while for highly 
favorable or negative pressure gradients the y+ range was 
reduced considerably, depending on the gradient magnitude. 

Based on their own experiments in a pressure-driven 
3DBTL, East and Hoxey [14] in 1969 proposed yet another 
similarity model based on the Johnston triangular polar plot. 
They noted Hornung and Joubert's [23] work which extended 
Johnston's finding that Region I of Fig. 1(b) was within the 
viscous sublayer and cited their own experimental results 
showing the triangle apex taking on larger widely varying y + 

values. 

2. Complex Models. The last five models tend to become 
more complicated and while not all are in vector form, they 
explicitly treat the vector nature of the 3DTBL velocity profile 
in contrast to the first six models which are in essence scalar 
models. These last models will be discussed briefly in order of 
perceived ascending complexity. The complications en
countered in these last models come about through con
sideration of some or all of the following: (1) separate con
sideration of velocity components, (2) pressure gradients, (3) 
wall shear gradients, and (4) wall shear angle gradients. 

In 1976 Chandrashekhar and Swamy [29] proposed a model 
characterized by separate, two-dimensional-like logarithmic 
equations for the streamwise and transverse velocity com
ponents. Examining the data of East and Hoxey for a 
pressure-driven 3DTBL, Chandrashekhar and Swamy ob
served that logarithmic functions could be applied separately 
to the streamwise and crossflow components of velocity with 

u vu* 
u+ = —Alo&K

J-^+B (3) 
U* V 

w vw* 
w+= — =C log 1 0 — +D (4) 

W* V 

where A = 5.4, 5 = 4.9, C=1.0, and D= 11.8 with the values 
of A, B, C, and D determined from the East and Hoxey [14] 
data. The nondimensionalizing shear velocities u* and w* are 
from the components of the wall shear stress where 
M*=VTn cos a0/p or u* = ^*Vcos a0

 a n a : w* = 
tf'Vsin a0. Note that the streamwise similarity law is 
essentially identical to the scalar Pierce and Krommenhoek 
[14] streamwise model. 

Chandrashekhar and Swamy show similarity results for the 
streamwise equation with data in the approximate region of 
9<y+ <900. For y+ >300 (an approximate value) the data 

It was recently pointed out to the authors that H. G. Hornung used this 
model as early as 1962 in his M.E. Sc. thesis at the University of Melbourne. 
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exhibit a two-dimensional wake behavior and for y + < 9 the 
agreement is poor so that a y + range of approximately 
9<y + <300 would be reasonable from their work. The y + 

range for equation (4) was not specified but an examination of 
the transverse similarity plots showed data in the range 
l<y+ < 6 0 , with the best fit appearing in the 1 < > + < 1 5 
range. For y+ > 15'the data points fell consistently below the 
analytical model line. 

The second of the complex similarity models was proposed 
by White, Lessmann, and Christoph [30] in 1975 to provide a 
velocity profile expression for use in their integral boundary 
layer analysis. This model uses a stream wise or freestream 
streamline coordinate system and the streamwise profile u{y) 
is related to the pressure gradient using the mixing length 
theory to obtain 

1 3P , , du 

~3y~ 

du 

Introducing a streamwise shear velocity, u*, based on the 
freestream component of the wall shear, then u+ =u/u*, 
y+ =yu*/v, and the above can be integrated to give 

S - l S0 + l -J2(S-S0) + ln( 
S+\ S 0 - l )] (5) 

where v 1 dp 

~p~u** Ti ~dj 

a n d S o = ( l + e - " c > + )'/ 

White et al. noted that attempts at developing a crossflow 
profile with reasoning as for the u+ profile were without 
success. They ultimately suggested a form based on the 
unilateral hodograph model of Mager [31] with 

w+ =w+ t a n a 0 ( l - ^ + / 6 + ) 2 (6) 

where 5+ is the nondimensional boundary layer thickness. It 
was noted that this form does not accommodate bilateral 
crossflow profiles. 

No similarity plots were given by White et al. for this two-
component model as it was developed as part of a larger 
computational study not aimed specifically at near-wall 
similarity. The approximate y + range of equation (5) was 
inferred by White et al. when they defined S0 such that for 
zero pressure gradient the two-dimensional logarithmic law of 
the wall is returned. This would suggest an initial look at ay + 

range of approximately 50 to 300. There does not appear to be 
any simple way to estimate the y + range for the transverse 
similarity model. 

In 1965 Perry and Joubert [32] developed a near-wall model 
using similarity arguments and treating the near-wall region 
as an equilibrium layer. Townsend's (33) local similarity 
concept led Perry and Joubert to an isotropic eddy viscosity 
model relating the shear stresses and strain rates in a three-
dimensional flow. Their analysis provided for streamwise and 
transverse pressure gradient effects and gives an integral form 
to the similarity law with 

3± = _L r -L[l+2ucos8 + u2]'Ady+ +C. CI) 
q" K J i y + 

<=y+ ctv/q*3, y+ =yq*/v and <x = 
(dp/dz)2] is a local pressure gradient 

where q* 
\/p [{dp/dxf 
parameter. The velocity qd in equation (7) is the developed 
velocity or length of arc from the origin in a polar or 
hodograph figure, that is 

For better consistency with the equations of motion, 8 here 
is the supplement of the angle used in Perry and Joubert [32] 
and corresponding changes have been made in equation (7). 

The effect of the pressure gradient parameter, ctv/q*3, is to 
cause" deviations from the two-dimensional logarithmic line to 
shift bodiiy up and down along this line. It should be noted 
that 6 depends on a priori knowledge of the direction of local 
wall shear and pressure gradient. 

The upper y + limit for this model is identified with the apex 
of the Johnston polar plot. While Johnston [22] originally set 
the apex of the polar model asj>+ = 1 5 , Hornung and Joubert 
[23] subsequently found this apex to approach y+ = 1 5 0 and 
still later Perry and Joubert show three-dimensional similarity 
plots with this apex as high as y+ =2000 . All this suggests a 
relatively large possible y+ range for this similarity model, 
from as low as about 10 to 2000 or more. 

In 1973 van den Berg [5, 15, 34] developed a two-
component similarity model that includes both pressure 
gradient and inertial effects. His development begins with the 
3DTBL motion equations in Cartesian coordinates oriented in 
arbitrary directions. Van den Berg noted that a considerable 
simplification of the acceleration terms and the subsequent 
mathematics occurs if the similarity model is developed for 
components of velocity along and normal to the local wall 
shear stress directions which can be designated £ and f. These 
are in effect rotated Cartesian coordinates not to be confused 
with more frequent usage as orthogonal curvilinear coor
dinates identified with the streamwise flow. This choice of 
coordinate system requires the a priori knowledge of the local 
wall shear direction. 

Utilizing a mixing length hypothesis, nondimensionalizing 
both the «f

+ and w£ components with a shear velocity defined 
as q* = Vr^Tp, and evaluating inertia terms using his earlier 
two-dimensional similarity model, van den Berg develops the 
following two component similarity model with the restric
tions that \a\y+<<l and 1/31 (In y + )2y + < < 1 . Thus the 
form of the model which includes both inertial and pressure 
gradient effects is restricted to either small pressure gradients 
and shear gradients or to relatively small y+ values, and is 
given by 

1 r 1 1 (In y + )2y+1 
u{=- \lny++KC+-a(y

+ + - ^ ( y / y (15) 
K *- Zd Zd K -J 

w + _ T ia^+ + b) + fr 
(In y + )2y + 

} (16) 

where 

uk/q*, w£=Wi;/q*, 

v dp v 

pq*' 3f ' Pi q'2 

ai = 

dq* 

a? ' 

v dp 

pq*3 dt; 

s q* 
d<j> 

"aT 
and 4> is the wall shear stress angle relative to the x coordinate 
and b= 13. 

When only pressure gradient effects are considered, the van 
den Berg model is not restricted in pressure gradient 
magnitude or y+ values. This analysis is somewhat similar to 
that of Perry and Joubert , and White, Lessmann, and 
Christoph. 

In 1972 East [35] proposed the most complex three-
dimensional similarity model for the general case of com
pressible flows which requires stress distribution information 
through the boundary layer and considers the nonalignment 
of the velocity gradient and shear stress vectors. This last 
feature appears to have been included to adapt the model into 
Bradshaw's [36] computational scheme which also treats this 
nonalignment. 

The East model consists of six partial differential equations 
and two algebraic equations. Two of the partial differential 
equations were derived by taking into account the variation in 
the orientation of the shear stress vector near the wall, two 
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were derived by relating the velocity vector magnitude and 
magnitude of the velocity gradient, and the remaining two 
were modifications of Bradshaw's [36] turbulent stress 
transport equations. For compressible flow two algebraic 
equations are needed to provide for density and viscosity 
distributions in the boundary layer. This system of equations 
was solved numerically by East as part of Bradshaw's 
program in the range 0<y+ < 10,000. No comparisons with 
experimental data were presented. 

East presents results in q + and y + coordinates for his 
model for the compressible 2DTBL case and shows excellent 
agreement with well accepted results for this case, noting that 
the closeness of fit of other results to his is dependent on the 
choice of the law of the wall constants K and C. East also 
presents graphical results for the. incompressible three-
dimensional case with strong cross flow. These results are in 
terms of two parameters, the direction of the viscous shear 
relative to the wall shear, and the gradient value at the wall of 
the total shear vector angle. The practical difficulties in 
measuring these parameters made it impossible to attempt to 
validate these graphical results. It is worth noting that for 
East's model no effect on the similarity law for the log-like 
region is seen until values of y + >200, near the upper limit of 
where similarity is likely to be expected in the three-
dimensional case. No experimental data was used to verify 
this model. 

Summary 

It is convenient to view the 11 similarity models in two 
groups. The first group of six models can be described 
collectively as simple scalar models following the two-
dimensional similarity law or law of the wall. In the form of 
equation (2), the differences among these scalar models are in 
the equivalent velocity or velocity component which is defined 
in the q + term. Except for the stream wise model, each 
equivalent velocity is nondimensionalized by a shear velocity 
assumed to be related to the local wall shear stress as in the 
two-dimensional case with q* = VT0/P- In the limit of 
vanishing skew, these models all become identical. None of 
these six models attempts to include explicitly any pressure 
gradient or inertial effects on the similarity model equation. 

In comparing experimental three-dimensional data to any 
of these six models, the q+, y+ pair appropriate to each 
model is in effect compared to the two-dimensional similarity 
law-the uniqueness of each of these models lies in the 
particular definition of q+ and y+ for each of the models. 
Since the analytical or model line for these six scalar models is 
the two-dimensional law of the wall, any convenient form of 
this wall law can be used. For example, the model line for all 
of these six cases could be the one, the two, or the three 
formula law of the wall, or the Spalding third or fourth order 
single formula where the role of the u + and y + variable are 
interchanged with y + =/( u +). 

In general, specific y+ ranges of applicability of these six 
scalar models are not given. In the case of the Johnston model 
subsequent measurements have shown his proposed upper 
limit of y+ =50 might well be raised significantly. As a 
generalization, since these six models are all variations of the 
logarithmic form of the two-dimensional law of the wall, a 
first look for similarity in the three-dimensional case would 
focus on the range of y+ from approximately 50 to 300, with 
the upper limit expected to be sensitive to pressure gradient 
magnitude (Patel [37], Patel and Head [38]) with the exact 
effect of pressure gradient direction not generally predictable. 

In the second group of the five more complex or vector 
similarity models, the Chandrashekhar and Swamy model is 
the simplest. Like the scalar models, it treats no explicit 

pressure gradient effects and it results from the empirical 
fitting of some 3DTBL data. 

The van den Berg, Perry and Joubert, and White, 
Lessmann, and Christoph models require the explicit input of 
pressure gradient information. Whether the inclusion of 
pressure gradient information in these models can help the 
model's predictive capability is a question which can only be 
answered by an experimental program. A common feature in 
the van den Berg, Perry, and Joubert, and White et al. model 
derivations is the use of mixing length or eddy viscosity 
hypotheses. The van den Berg model is demanding in that it 
requires not only the local wall shear direction but the vector 
shear gradient in the plane of the flow as well. The East 
model, even in the case of an incompressible flow, contains 
parameters which, at this time, are judged as extremely 
difficult if not impossible to measure and hence this model 
could not be tested here. 

A basic but untested assumption common to all eleven 
proposed models is the existence of some friction velocity q* 
that is uniquely related to the local wall shear stress. Unlike 
the two-dimensional case, there is no body of experimental 
data relating the wall shear stress to the shear velocity to 
provide an empirical basis for this identification. Up to this 
point one simply seeks a suitable nondimensionalizing 
constant to collapse a velocity profile-that such a non
dimensionalizing constant is uniquely identified with the local 
wall shear stress has not been established. At least for small 
deviations from two-dimensional flows this seems to be a 
reasonable approach, but the assertion that q* = Vr0/p for 3D 
flows is without experimental verification, and it should be 
noted that a parameter q* might collpase the velocity profiles 
without being related to the local wall shear stress. It is this 
identification of the nondimensionalizing shear velocity with 
the wall shear stress which is the critical assumption in near-
wall similarity in the 3DTBL. This identification is empirical 
and it must be experimentally demonstrated that the local wall 
shear stress is in fact identified with the nondimensionalizing 
shear velocity. 

Evidence (1) to validate the existence of near-wall similarity 
in a 3DTBL, (2) of the existence of a shear velocity related to 
the local wall shear stress as with q* = Vr0/p, (3) that pressure 
gradient information is necessary in an adequate similarity 
model, and/or (4) that mixing length theory is sufficient to 
develop an adequate similarity model in the three-dimensional 
flow, is difficult to obtain. A posteriori support for one or 
more of these proposed models would come from the 
validation of these models using experimental data including 
the simultaneous direct force measurement of the local wall 
shear stress magnitude and direction. The authors have 
completed an extensive experimental program which tests the 
predictive capability of the first ten of the eleven models 
reviewed here. Results are presented in the two companion 
papers. 

Conclusions 

Eleven proposed models for near-wall similarity for 3DTBL 
flows have been reviewed. Six of these models are relatively 
simple scalar models and five are more complex and/or two-
component vector models. Ten of these models can be tested 
as to their validity or predictive capability using measured 
mean velocity field, wall pressure field, and direct wall shear 
stress field (magnitude and direction) data. One of the models 
cannot be tested because of its dependence on two parameters 
which currently are extremely difficult (if not impossible) to 
measure. This overview will facilitate the understanding of the 
results of the test of these models presented in companion 
papers. 
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Near-Wall Similarity in a Pressure-
Driven Three-Dimensional 
Turbulent Boundary Layer 
Ten of eleven three-dimensional near-wall similarity models identified in the 
literature are evaluated with direct wall shear, velocity field, and pressure gradient 
data from a three-dimensional pressure-driven boundary layer flow. In a primary 
focus in the interval 50 <y+ <300 graphical results indicate that six simpler models 
and the streamwise component of one complex model are adequate for profiles with 
monotone increasing skew up to about 15 deg. The three remaining complex models 
provide a better predictive capability (for the main flow component) for monotone 
increasing skew up to almost 20 deg but these require significantly more input. One 
of three transverse models shows reasonably good predictive capability. Similar 
general results also appear for profiles with increasing-decreasing skew as occurs 
with freestream streamline recurvature with the maximum skew limited to about 10 
deg. In a secondary focus in the interval ofy+ <50 there is a very strong tendency 
for the data to follow the well accepted, two-dimensional like behavior often 
identified with a transition or buffer region below the two-dimensional log-like law. 

Introduction 
The motivation for establishing the existence of and limits 

on near-wall similarity in the 3DTBL1 case is much the same 
as in the 2DTBL case. The importance of local near-wall 
similarity laws in 3DTBL and channel flows grows when one 
recognizes that the empirical eddy viscosity and mixing length 
models often rely on wall similarity information, especially in 
the near-wall behavior. The question is even more critical in 
current applications of higher order modeling of the Reynolds 
stresses where in many existing numerical solution techniques 
only turbulent stresses are included in the motion equations. 
These techniques exclude any near-wall calculations where 
viscous stresses exist by using a patch or match to a similarity 
model. A good knowledge of and limits on local three-
dimensional near-wall similarity laws are crucial to these 
kinds of solution techniques. 

The direct force measurement of local wall shear stress is an 
absolute requirement in any serious study of the near-wall 
similarity question in three-dimensional flows. The wall shear 
stress is required since a key question in the test of similarity 
models in three-dimensional flow is whether or not the local 
wall shear stress is related to some form of a three-
dimensional shear velocity as in q* = •Sr07p, analogous to the 
two-dimensional case. This is an essential requirement since 
the several near-wall similarity models proposed in the 
literature for the 3DTBL case all require the local wall shear 

The short forms 3DTBL and 2DTBL will be used as convenient for the 
three- and two-dimensional turbulent boundary layers. 
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stress (or some component of it) in the necessary non-
dimensionalizing of experimental data. 

The literature contains at least 11 models proposed to 
describe near-wall similarity in three-dimensional flows. Six 
of these models (Coles [1], Johnston [2], Hornung and 
Joubert [3], Pierce and Krommenhoek [4], Prahlad [5], and 
East and Hoxey [6]) are relatively simple scalar models using 
various forms of an equivalent velocity in the two-
dimensional similarity law. Five of these models (Chan-
drashekhar and Swamy [7], White, Lessmann, and Christoph 
[8], Perry and Joubert [9], van den Berg [10], and East [11]) 
are more complex and are either two-component models or 
recognize the vector character of a three-dimensional flow. 
These 11 models are reviewed in a companion paper by 
Pierce, McAllister, and Tennant [12]. In the following figures 
these models are designated by letter symbols as summarized 
in Table 1. 

Ten of these models were tested in their predictive 
capability by comparison with experimental data including 
the simultaneous direct force wall shear magnitude and 

Table 1 Three-dimensional similarity model designations 
Model Short Forms 

Coles [1] C 
Johnston [2] J 
Prahlad [5] P 
Hornung and Joubert [3] HJ 
Freestream Profile Pierce and Krommenhoek [4] F 
East and Hoxey [11] EH 
Perry and Joubert [9] PJ 
van den Berg [10] B 
Chandrashekhar and Swamy [7] CS 
White, Lessmann, and Christoph [8] WLC 
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FLOW 

Fig. 1 Flow field showing data stations and the wall shear and 
pressure gradient vectors 

direction measurements for a pressure-driven three-
dimensional flow generated by a teardrop cylinder placed 
normal to a flat plate. This flow contains a wide variety of 
wall shear and wall pressure gradient orientations as shown in 
Fig. 1. The vectors in this figure are shown to scale. Details on 
the direct force shear meter are presented in Tennant, Pierce, 
and McAllister [13] and on the wall shear measurements in 
McAllister, Pierce, and Tennant [14]. Three of the models 
tested use wall shear and/or pressure gradient parameters 
unique to each model as defined in the companion paper [12]. 
The value of the van den Berg pressure gradient parameter, a, 
is specified in the captions of Figs. 2-6. Caution is advised on 
generalizations based on the pressure gradient parameter, a, 
alone since this parameter does not clearly reflect wall shear-
pressure gradient vector orientations. 

Measurements of mean velocity field, wall pressure field, 
and simultaneous direct force wall shear magnitude and 
direction were made to allow the evaluation of 10 of these 
proposed models at 25 stations as shown in Fig. 1. Data 
stations were identified by a letter-number pair. Letter in
crements correspond to one-inch increments in the transverse 
direction where the A series is on the flow line-of-symmetry. 
Numbers represent distances relative to the leading edge of the 

Fig. 2 Simple and complex (mainflow component) model similarity 
plots for A7, nominal plane of symmetry flow, la! = 8 . 7 x 1 0 - 3 

Fig. 3 Simple and complex (mainflow component) model similarity 
plots for E7, maximum skew 5-15 deg, I a I = 8.7 x 10 ~ 3 

cylinder with zero corresponding to the leading edge and plus 
in the upstream direction. 

In the following, because of space limitations, comparisons 
will be made with experimental data at five stations judged 
representative of the wide variety of flow conditions 
examined. These results are for stations A7, E7, G3, El, and 
G-5. Results for all the stations are contained in Pierce and 
McAllister [15]. It is noted that in this reference the ex
perimental velocity data points shown for the transverse or 
vv+ van den Berg model should be multiplied by - 1. That is, 
these data points should be shown as their mirror images with 
respect to the y + axis. 

In making an assessment of the validity of any near-wall 
similarity model for a three-dimensional flow, an early 

q" 
q + 

u + 

= friction velocity, Vr0/p 
= nondimensional developed 

velocity profile 
= nondimensional mainflow 

velocity (unique to each 
similarity model) 

w+ = nondimensional transverse 
velocity (unique to each 
complex model) 

y = distance from wall 
y+ = nondimensional distance, 

yq*/v 

a = pressure gradient parameter, 
v\giadp\/pq*i 

p = density 
T0 = wall shear stress 
v = kinematic viscosity 
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Fig. 4 Simple and complex (mainflow component) model similarity Fig. 6 Simple and complex (mainflow component) model similarity 
plots for G3, maximum skew 5-15 deg, lal = 10.7x10" plots forG-5, modest bilateral skewing, lal = 14.4x10" 

Fig. 5 Simple and complex (mainflow component) model similarity 
plots for E1, maximum skew greater than 15 deg, lal = 19.6 x 1 0 - 3 

question that arises is that of over what range of y + values 
one might expect to find similarity. In his extensive study of 
2DTBL data, Coles [1, 16] suggests that consistent similarity 
behavior begins at about y + of 50 and for moderate pressure 
gradient flows extends to about 300. Questions on possible 
inaccuracies in velocity measurements arising from high-
turbulence effects, wall interference or wall proximity and 
other effects, in the range of y + <50 for two-dimensional 
flows would also seem likely for these three-dimensional 
flows as well. It is also noted that the upper limit of y+ =300 
is reduced in adverse pressure gradient flows and tends to 
increase in favorable pressure gradient flows. 

For the three-dimensional data in this study this two-
dimensional experience will be used as a guide in the test for 
similarity. For the six simpler similarity models, the PJ 
model, and for the principal flow component of the CS, WLC 
and B models, the primary focus will be on data in the 
50<.y + <300 range. Clearly this upper limit of 300 must be 
considered flexible just as in the two-dimensional case. One 
might also expect that as in the 2DTBL, the pressure gradient 
will strongly affect the range of similarity for the six simpler 
models. Some of the more complex models incorporate 
pressure gradient information and in these cases the 

Fig. 7 Transverse van den Berg (B) similarity model 

agreement with experimental velocity-wall shear data might 
be expected to be maintained at these higher y + values. 

It is worth noting, however, that in the early study of three-
dimensional flows with indirect wall shear measurements with 
Preston tubes (which presumes the existence of two-
dimensional like near-wall similarity in three-dimensional 
flows), Prahlad [5] showed a high degree of velocity profile 
data consistency in the y+ < 50 range (though not with the 
logarithmic-like law). Such consistency was also found in the 
velocity data of a few others including Ezekwe [17] and 
Brown [18]. It will prove to be useful to evaluate these 
simlarity models in a secondary focus in this >•+ <50 range as 
well. 

In the case of the three models which propose a transverse 
component of the flow (in the coordinate system unique to 
each model), there is no firm basis for a choice as to the.y + 

region to focus on in looking for near-wall similarity. 
The test of the suitability of the ten similarity models 

evaluated here is a graphic or visual test. In each case an 
analytical or similarity model line is shown as a solid line of 
q+ (or u+ and vv + ) vs. y+ . In some cases (PJ, B, and WLC) 
input from experimental data is required to construct this 
model line while in the others this line is independent of any 
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Fig. 8 Transverse Chandrashekhar and Swamy (CS) similarity model 

experimental data input. Next, the experimentally measured 
velocity profile and local wall shear stress are combined as the 
various models specify to provide pairs of q + (or u + and w +) 
and y + coordinates and these are shown as symbols. For the 
six simpler models the model line is here arbitrarily taken to 
be the Spalding [19] third-order two-dimensional near-wall 
similarity law. This choice allows a comparison of these 
models in the 50<j»+ <300 range of principal focus as well as 
the very near-wall interval of y + <50 of secondary focus. 
Model lines for both the NPL [20] and Patel [21] constants are 
shown in Fig. 2 for the six simpler models for comparison 
purposes with the Patel constants used in all other cases. For 
the PJ, B, and WLC models only the model lines for the Patel 
constants are shown. For the CS model specific constants are 
given by the model authors. Additionally, since for vanishing 
secondary flow these four models all return the two-
dimensional logarithmic law, the q+ or w+ model lines are 
arbitrarily shown in the 5<.y+<1000 interval. The same 
lower limit is used for the transverse velocity model lines as 
well. In some instances the flow parameters were such that the 
u+ model line was terminated early and the w+ model line 
could not be drawn because of a negative square root problem 
in the WLC model. The reader is cautioned again that the 
two-component similarity models do not use the same 
coordinate systems and this should be recognized in any 
attempted generalizations. 

Uncertainties. The q+ (or u+ or w + ) and y + un
certainties in plotting the results from the same experimental 
data generally vary among the similarity models because of 
the different ways the data are manipulated in each of these 
several models. Additionally, the uncertainties for a given 
model vary as one moves throughout the boundary layer. 

In the three-dimensional case a comparison of experimental 
data with a similarity model can involve two kinds of un
certainty. Such a comparison requires that for each of the 
models an experimentally determined q+ (or«+ or w + ), y + 

pair be calculated. This uncertainty is here called an ex
perimental uncertainty in q+ (or« + or w+)and.y+. 

In the case of the six simpler models and one of the two 
component models (CS), the analytical q+ (or w+ or vv +) and 
y+ values (the solid lines) require no experimental data input 
hence for given constants K and C there is no uncertainty 
identified with the analytical or model line. However, in the 
three complex models of WLC, PJ, and B, the analytical or 
model line requires the input of specific experimentally 
measured data such as a measured pressure gradient vector, a 
wall shear vector, or gradients in the magnitude and direction 
of the wall shear vector. By inputting experimental data into 
the calculation of a model line there is introduced into that 
model prediction an uncertainty here called a model un-
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Fig. 9 Transverse White, Lessman, and Christoph (WLC) similarity 
model 

certainty. Note that this model uncertainty is different from 
what has been called the experimental uncertainty in 
calculating a q+ (or u+ or w + ),y+ pair from velocity profile 
and wall shear data, although both these kinds of un
certainties arise from various possible measurement errors. 
The total uncertainty for the WLC, B, and PJ comparisons in 
the similarity figures discussed here would combine the model 
uncertainty and the experimental uncertainty as defined 
above. 

It should be noted that each of these models includes two 
empirical constants. The question of the uniqueness and 
accurate specification of these two constants in the two-
dimensional case is documented in the literature by the large 
number of different constants, and these ambiguities should 
also be recognized here. Finally, the uncertainties reported for 
the local wall shear measurements include no pressure 
gradient effects. This is due to the lack of agreement among 
proposed corrections (and no corrections in pressure gradient 
flows should be included as one of these possible corrections). 

In Figs. 2 through 8 experimental uncertainties in q+ (or 
w+ or w + ) and y+ are shown below the model lines for the 
data point nearest the wall and at a y+ value of about 300. 
Model uncertainties were calculated at fixed y+ values of 10 
and 300 and these uncertainties in q+ (or u+ or w + ) are 
shown above the model lines. In the case of the PJ and WLC 
model lines in Figs. 2 through 6, the WLC model uncertainties 
are shown above the PJ values. In Fig. 9 only, the ex
perimental uncertainties are shown above the model lines. 
Computational difficulties did not allow calculation of model 
uncertainties for this figure. All uncertainties are at nominal 
20:1 odds and the model uncertainties reflect the most recent 
estimates in the data reduction process. The method of Kline 
and McClintock [22] was used in the calculation of these 
uncertainties. 

Similarity Model Results. In an attempt to organize the 
comparisons the pressure-driven velocity profiles are divided 
into four categories based on the skewing of the local velocity 
vector relative to the local freestream direction. The first 
category is for the nominal plane of symmetry with skew 
angles approximately 1 deg or less, the second two categories 
are for monotone increasing skew angles from 5 to 15 deg, 
and for more than 15 deg, and the last category is for profiles 
with first increasing and then decreasing skew angles. In all 
cases the changes in skew angle are with respect to an in
creasing distance from the local freestream direction. Of the 
velocity profiles in this last group, only the profile at station I-
5 reported in Pierce and McAllister [15] is (slightly) s-shaped 
or bilaterally skewed. 

The pseudo two-dimensional, nominal plane of symmetry 
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profiles along the A column, stations A7, A5, and A3, show 
the total velocity vector skewing less than 1.5 deg. Results for 
station A7 are shown in Fig. 2. As expected, the six simpler 
models gave identical results, with the measured velocities 
larger than the model line predictions. The CS model behaves 
essentially the same way. The complex models of B, PJ, and 
WLC, all of which include pressure gradient parameters, all 
show good agreement for a modest y + interval. The 
possibility of a pressure gradient effect in the wall shear 
measurement must be noted since the slightly higher q + 

values shown for the simpler models could result from a low 
wall shear and this would intuitively be the direction of such 
an error for these stations. 

The better agreement for the PJ, WLC, and B models 
supports the accuracy of the wall shear measurements and 
suggests that the ability to include pressure gradient effects is 
important. With the nearly zero skew measured, none of the 
transverse model comparisons in Figs. 7-9 would appear to be 
meaningful but are included for completeness. 

The second group of profiles considered all showed a 
monotone increasing skew angle relative to the local 
freestream direction and limited to 15 deg. The E7 data with a 
maximum skew of 7 deg is characterized by a positive pressure 
gradient while the G3 data has a maximum skew of 12 deg and 
is characterized by negative pressure gradient. The six simpler 
models give essentially identical results with the adverse 
pressure gradient results in Fig. 3 riding consistently above the 
model line, while the favorable pressure gradient results in 
Fig. 4 tend to fall below the model line. In both these cases the 
slope of the data is noticeably less than that of the model line. 
The mainflow CS model is similar to these simple model 
results for E7 in Fig. 3, but shows better agreement for station 
G3 in Fig. 4. 

The B, PJ, and WLC results in Figs. 3 and 4 are nearly 
identical and show good agreement with the measured data 
for the primary y + region of comparison. The effect of both 
the magnitude and the sign of the pressure gradient appears to 
be well accounted for in these three models for the mainflow 
velocity components. 

For all ten models the data shows a very consistent behavior 
for y+ <50 with the data dropping below the log-like model 
line and following the form of the empirical Spalding two-
dimensional line. 

For both the E7 and G3 profiles only a modest transverse 
flow is present. The WLC w+ model in Fig. 9 shows good 
agreement for E7 in the 10<.y+<100 range. The WLC 
transverse model for G3 could not be evaluated because of a 
negative argument in a square root quantity. This quantity 
arose from determining the nondimensional boundary layer 
thickness by evaluating the freestream model at the boundary 
layer edge as suggested by the model authors. 

For the transverse components of the E7 and G3 profiles 
the CS model shows very poor agreement. The choice of the 
principal flow direction in the B model results in an especially 
small transverse component for y+ less than 300. The data 
and model line both agree well, but the small transverse flow 
offers a questionable test of the transverse model. 

The third flow category is represented by the El data in 
Figs. 5 and 7-9. For El with its largest skew angle of 25 deg, 
the six simpler models begin to show significant differences as 
a result of the way the experimental data are manipulated to 
generate the equivalent q+ values. The poor agreement 
between the data and model line is a clear indication that the 
mixing length theory which these models implicitly support 
tends to produce poor results for large skewing. The poor 
performance of the B, PJ, and WLC models in Fig. 5 should 
also be no surprise as these models explicitly use a mixing 
length in their development. It appears that the mixing length 
model can be useful for skew up to about 20 deg as shown by 
results in Pierce and McAllister [15] where for station E3 the 

PJ model and the mainflow component models of B, WLC, 
and CS show good agreement in the y+ interval from 50 to 
100. Since the pressure gradients for stations El and E3 are 
nearly equal, the breakdown in the model performance ap
pears to lie in the large increase in the skew angle. 

The transverse WLC model could not be compared with the 
data because of the negative square root argument discussed 
earlier. The CS transverse model results for E3 are as poor as 
for El shown in Fig. 8. The B transverse model results for E3 
are much better than the El results shown in Fig. 7. 

Again, the choice of a coordinate system aligning itself with 
the wall shear in the B model leads to small transverse 
velocities in the region where similarity would be expected 
even for these cases of large skew. 

The fourth group of data is for local velocity vector skew 
angles which first increase and then decrease with respect to 
the local freestream velocity vector direction. The station G-5 
data in Figs. 6 and 7-9 are representative of the model 
predictions for this data grouping. The data in the lower y + 

range for the six simple models tend to ride high. There is also 
a small tendency for the velocity data to suggest a lower slope 
to the log line. In the plane of symmetry case this has been 
attributed to lateral streamline divergence but such streamline 
divergence is more difficult to identify clearly in this velocity 
profile. 

The PJ model and WLC mainflow model in Fig. 6 show 
good agreement over the 50 <y + < 200 range. The transverse 
WLC model in Fig. 9 shows relatively poor agreement. The 
CS and B u+ models also demonstrate relatively good 
agreement with the data. The transverse B model also shows 
good agreement with the data while the CS transverse model 
shows poor agreement. 

The van den Berg (B) model tested here includes both 
inertial and pressure gradient effects and, as such, is restricted 
to \ct\y+ < <1 and 1/31 (lnv+ )2>p+ < < 1 where a and /3 are 
pressure and wall shear gradient parameters defined in the 
companion paper [12]. For the range of these variables in the 
data reported here this model should be restricted to y + 

values of about 100 or less in all cases of both the u+ and the 
vv+ plots. For this model, a short vertical line was placed 
across both the u + and w + model lines at the y + values where 
lal.y+ =1 or l@\(lny + )2y+ =1 to suggest a generous upper 
limit beyond which this model including both inertial and 
pressure gradient effects is not expected to be applicable. A 
solid line shows the a limit and a dotted line is used to show 
the/3 limit. 

Summary 

For the six simpler models, negligible differences among the 
model lines exist for skew angles less than about 15 deg. The 
model predictions are nearly identical but tend to show 
consistent good agreement with the data only for y+ <50. 
Agreement is good in the 50<.y+ <300 range only for the 
near zero pressure gradients. For skew angles above about 15 
deg, the simpler models show poor agreement with the 
measured data for ally + values. 

The mainflow CS model tends to agree with the data in the 
5 0 < ^ + <300 interval for skew angles under 15 deg where the 
pressure gradient is near zero or negative. When the pressure 
gradient is positive, agreement is not as good. The transverse 
CS model shows poor agreement with the data for all the flow 
stations shown in Fig. 1. 

Good agreement with the data is shown for the PJ and the 
mainflow B and WLC models in the 50<.y+ <300 interval for 
both moderately favorable and moderately adverse pressure 
gradients for skew angles up to about 20 deg. For larger 
pressure gradients with skew angles under 20 deg, the upper 
limit on the.y+ range is reduced only slightly for the mainflow 
component of the B model, with a larger reduction for the PJ 
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and the mainflow component of the WLC models. Since the 
B, PJ, and WLC models all incorporate pressure gradient 
parameters, their better agreement with the data is not sur
prising. No noticeable benefit appears to result from the 
inclusion of inertial effects in the B model for the flow 
conditions encountered here. The failure of the PJ and the 
mainflow B and WLC models at higher skew angles is 
probably due to the failure of the mixing length model 
together with the large pressure gradients generally present 
with these large skew angles. 

Neither the B or WLC transverse flow models is adequate 
for all the flow conditions encountered here. The nature of the 
B model formulation results in small transverse velocity 
component with corresponding small w+ values. 

A comparison of the pressure gradient vector and wall 
shear vector relative orientation shown in Fig. 1 for A7, E7, 
G-5, and G3 reveals the importance of the pressure gradient 
term in a three-dimensional near-wall similarity model. At 
station A7, the pressure gradient and wall shear vectors are 
collinear as in an adverse pressure gradient 2D flow, while the 
angle between these is about vectors 90 deg for E7, about 45 
deg for G-5, and about 135 deg for G3. The six simple scalar 
models show varying degrees of agreement for these three 
stations while the B, PJ, and WLC models generally show 
much better agreement. Questions concerning possible 
pressure gradient effects on the wall shear meter and con
sequent q* values are only partially answered in the literature 
[15]. The better predictive ability of the B, PJ, and WLC 
models indicates that models with a pressure gradient 
parameter are needed to accurately predict near-wall flow 
behavior. 
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Near-Wall Similarity in a Shear-
Driven Three-Dimensional 
Turbulent Boundary Layer 
Ten of eleven proposed three-dimensional similarity models identified in the 
literature are evaluated with direct wall shear, velocity field, and pressure gradient 
data from a three-dimensional shear-driven boundary layer flow. Results define an 
upper limit on velocity vector skewing for each model's predictive ability. When 
combined with earlier results for pressure-driven flows, each model's predictive 
ability with and without pressure gradients is summarized. 

Introduction 

The variety of three-dimensional near-wall similarity 
models presented in the literature is documented in Pierce, 
McAllister, and Tennant [1] where eleven models are 
reviewed. 

The predictive abilities of ten proposed three-dimensional 
similarity models were previously evaluated for a pressure-
driven flow (Pierce, McAllister, and Tennant [2] and Pierce 
and McAllister [3]). This paper evaluates these same ten 
models using experimental data from a shear-driven three-
dimensional flow. The flow is described as shear-driven or 
shear-dominated to contrast it with the flow described in the 
earlier work [2, 3] where secondary flow is dominated by 
pressure forces and hence described as pressure-driven. In the 
earlier work the authors have examined the predictive ability 
of these models in a pressure-driven flow over a variety of 
pressure gradients and wall shear orientations. This shear-
driven flow approaches a downstream near-zero pressure 
gradient condition. The model evaluations with the shear-
driven data can provide some insight into each model's ability 
to predict the local velocity magnitude and direction in a 
three-dimensional turbulent boundary layer without the 
added complexity of the larger pressure gradients reported in 
reference [2]. Comparing the model evaluations from this 
flow with the model evaluations from the earlier pressure-
driven flow should provide the reader with a broader per
spective as to the predictive abilities and restrictions of the 
proposed models tested for two broad classes of three-
dimensional flows. 

The need for the direct measurement of wall shear stress 
magnitude and direction by a floating element device, the key 
to an experimental study of three-dimensional similarity, 
raises the question of possible pressure gradient effects on the 
measured wall shear data. The presence of minimal (near-
zero) pressure gradients in portions of the shear-driven flow 
suggests less uncertainty in the necessary direct wall shear 
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measurements. The results of Pierce, McAllister, and Tennant 
[2] and Pierce and McAllister [3] suggest that any pressure 
gradient effects on the direct force-sensing floating element 
shear meter (Tennant, Pierce, and McAllister [4]) used to take 
these wall shear measurements are small. A shear-driven flow 
should reduce any possible pressure gradient effects on the 
wall shear data and result in greater confidence in the model 
comparisons. 

Flow Geometry 

The three-dimensional shear-driven flow was created by a 
3.8 cm high step yawed at a 30 deg angle. Figure 1 shows the 
step, the data stations, and the wall shear and pressure 
gradient vector directions. The limiting wall velocity and wall 
shear vectors are shown in Fig. 2. Note that the pressure 
gradient, wall shear, and nearest wall velocity vectors in Figs. 
1 and 2 are shown to scale. Values of the van den Berg [5] 
parameter, a, are given in the captions of Figs. 3-7. The 
nominal reattachment line is shown as a broken line 
paralleling the step trailing edge. The tunnel used to obtain 
the experimental data is described in McAllister, Pierce, and 
Tennant [6], the floating element device in Tennant, Pierce, 
and McAllister [4], and the remaining equipment in Pierce 
and McAllister [3], 

The data stations in Fig. 1 are located on a 5.08 cm grid. 
The station identification consists of two groups of digits 
where the first group indicates the distance in inches from the 
tunnel centerline while the second number indicates the 
centerline distance from the step's trailing edge. 
Measurements indicated a nominal 2DTBL two meters up
stream of the step. Reattachment behind the step was 
estimated as at 10.2 cm behind the step on the tunnel cen
terline and paralleling the step by observing yarn tufts. The 
stability of the wall shear meter behavior and the velocity 
measurements at station 0 6 was consistent with the flow 
visualization results. Velocity profiles indicated that spanwise 
invariance did not exist downstream of the step. 
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Fig. 1 Flow geometry with wall shear vector and pressure gradient 
vector map 

Experimental Results 

Velocity profiles, direct wall shear, and pressure gradient 
data were obtained for the step flow in Fig. 1. The velocity 
profiles nearest the step exhibited 67 deg of skew and in 
general were characteristic of other velocity data behind steps. 
The local freestream directions for each velocity profile were 
nominally aligned with the tunnel centerline, regardless of the 
distance behind the step. 

The wall shear vector orientations in Fig. 1 indicate a 
gradual increase in magnitude as one initially moves down
stream from the step. Simultaneously, the vector direction 
gradually relaxes from its initial skew relative to the tunnel 
centerline and approaches a nominally two-dimensional flow 
circumstance where the tunnel centerline and wall shear stress 
vectors are aligned. 

In comparing the wall shear and limiting wall velocity 
vectors in Fig. 2, the flow stations closest to the step show 
large angle differences between the two vectors. The limiting 
wall velocity vectors were measured at 0.254 mm from the 
wall with a miniature claw probe. The velocity angle un
certainty of ± 1.0 deg and the wall shear stress uncertainties, 
which are shown as curvilinear rectangles at the tip of the 
stress vectors in Fig. 2, cannot account for these angle dif
ferences for all the data stations. These results support the 

Nomenclature 

Fig. 2 Wall shear vector and limiting wall velocity map 

earlier work reported by Pierce, McAllister, and Tennant [2] 
which suggests the existence of noncollateral, near-wall flow 
in pressure-driven three-dimensional turbulent boundary 
layers where strong pressure gradients exist. Further 
downstream from the trailing edge (for the series 14 stations 
and downstream) the pressure gradient becomes essentially 
zero and the wall shear and nearest wall velocity direction 
become more nearly collateral, and well downstream the wall 
shear and velocity vectors gradually align themselves as ex
pected for a skewed flow relaxing to a two-dimensional state 
in a zero pressure gradient field. 

The pressure gradient vector field downstream of the step in 
Fig. 1 shows that the vectors closest to the step have the 
largest magnitudes and are nominally normal to the step 
trailing edge. The pressure gradient vectors quickly reduce to 
the nominal tunnel two-dimensional pressure gradient (near-
zero) value and direction of - 14 Pa/m at station 0 26. When 
compared to the pressure gradient magnitudes in Pierce, 
McAllister, and Tennant [2] which in a first approximation 
were assumed to have a small effect on the wall shear data, the 
pressure gradient magnitudes in this study are from 4 to 100 
times smaller for most flow stations. Any possible pressure 
gradient effects on the wall shear data in McAllister, Pierce, 

q* = friction velocity, V7vV> w+ = 
q + = nondimensional developed or 

velocity magnitude profile 
u'+ = nondimensional mainflow y = 

velocity (unique to each y + = 
similarity model) 

nondimensional 
velocity (unique 
complex model) 
distance from wall 
nondimensional 
yq*/v 

transverse 
to each 

distance, 

a = pressure gradient parameter, 
v I gx&&p\/pq*i 

p = density 
T0 = wall shear stress 
v = kinematic viscosity 
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Fig. 3 Simple and complex (mainflow component) model similarity Fig. 4 Simple and complex (mainflow component) model similarity 
plots for station 0 26, maximum skewing less than 15 deg, l«l = 0.37 x plotsforstation018,maximumskewinglessthan15deg, l<*l = 069 x 
10 J 1 0 ~ 3 

Fig. 5 Simple and complex (mainflow component) model similarity 
plots for station 0 14, maximum skewing less than 15-30 deg, «l = 
1.61 x 1 0 " 3 

Fig. 6 Simple and complex (mainflow component) model similarity 
plots for station 012, maximum skewing less than 15-30 deg, a =3 .2 
x 10" " ! - 3 

and Tennant [6] would presumably be essentially negligible 
for much of the shear-driven flow data reported here. 

Background 

In discussing the ten similarity models, the same model 
notation used in the companion paper of Pierce, McAllister, 
and Tennant [2] is used. Data are shown as symbols and the 
analytical or model lines are shown as solid lines in the 
figures. As discussed in the companion paper, one must 
consider both an experimental and a model uncertainty in this 
visual comparison. In Figs. 3 through 10 experimental un

certainties in q + (or u + or w +) and y + pairs are shown below 
the model lines for the data point nearest the wall and at a y + 

value of about 300. Model uncertainties were calculated at 
fixed y+ values of 10 and 300 and these uncertainties in q + 

(or u + or w +) are shown above the model lines. In the case of 
the PJ and WLC model lines in Figs. 3 through 8, the WLC 
uncertainties are shown above the PJ values. In Fig. 3 the 
results for the six simpler models are compared to the model 
lines for both the NPL and Patel constants, K and C. In all 
other cases only the model line for the Patel constants is 
shown. Computational difficulties did not allow calculation 
of model uncertainties for Fig. 11. All uncertainties are at 
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Fig. 9 Transverse van den Berg (B) similarity model 

Fig. 7 Simple and complex (mainflow component) model similarity 
plots for station 010, maximum skewing less than 30 deg, la! = 7.88 x 
10 

-

O 0 26 

o 0 IS 

A OI4 

CS a 0 12 

X 0 10 

O 2 10 

I I I 

Fig. 10 Transverse chandrashekhar and Swamy (CS) similarity model 

Fig. 8 Simple and complex (mainflow component) model similarity 
plots for station 210, maximum skewing less than 30 deg, lal = 13.6 x 
1 0 ~ 3 

nominal 20:1 odds and the method of Kline and McClintock 
[7] was generally followed in the calculation of these un
certainties. 

Similarity Model Comparisons 

The complex model comparisons are divided into three 
arbitrary groups based on the total skewing of the local 
velocity vector relative to the freestream direction and note 
that only monotone increasing skewing occurs in these data. 
The first group of profiles is for maximum skew angles 
ranging from 0 to 15 deg, the second group is for maximum 

Fig. 11 Transverse White, Lessman, and Christoph (WLC) similarity 
model 

skew between 15 to 30 deg, and the last group is for maximum 
skew over 30 deg. Two representative data stations for each of 
the three skewing categories are presented here while 
similarity plots for all the data are reported in McAllister [8]. 
As in Pierce, McAllister, and Tennant [2], for the van den 
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Berg model, a short vertical line was placed across both the 
u+ and w+ model lines at the y+ values where \u\y+ = l o r 
\p\ (Iny + )2y+ = 1 to suggest a generous upper limit beyond 

which this model including both inertial and pressure gradient 
effects is not expected to be applicable. A solid line shows the 
a limit and a dotted line is used to show the /3 limit. It should 
be noted that the region of validity of this model is con
siderably expanded in much of this shear-driven flow. As in 
the earlier reported pressure-driven flow results, the pressure 
gradient limit is generally the critical restriction. However for 
this shear-driven flow the pressure gradients gave an upper 
limit on y + of at least 300 at station 012, and greater than 600 
for the other three downstream profiles. Thus the range of the 
test of the validity of the B model was considerably extended. 

The six simpler models can be discussed collectively for the 
three skew groupings. Figures 3-8 show that the models 
generally show a poor level of agreement for the data over the 
50 < y+ < 300 interval with the slope of the data less than 
the model line and with the data dipping below the model line. 
This behavior is not unlike some reattaching two-dimensional 
flows indicating this behavior may not be caused by three-
dimensional effects. For the y + < 50 range, the data tends to 
follow the damped mixing length model line. For skew of less 
than 30 deg the six models show similar levels of weak 
agreement with the model lines. For larger skew angles, only 
the P, C, and J models show reasonable agreement. The 
general level of agreement seen here is similar to that shown 
for these models in the pressure-driven flow described in 
Pierce, McAllister, and Tennant [2], and the behavior is 
typical of the plane of symmetry and small monotone skew 
cases. In that latter case the existence of a pressure gradient 
effect possibly resulting in a too-low measured wall shear was 
considered. Here in a near-zero pressure gradient field, such 
an effect is more difficult to accept. Agreement in the 50 < 
y+ < 300 range could be improved by changing the slope of 
the model line but it is felt that the rapid drop-off in the 
velocity with increasing wall distance, while somewhat similar 
to the earlier described plane of symmetry flow, is here more a 
reflection of the larger local velocity defect that the step 
develops in the lower portions of the velocity profile. As is 
well known the outer regions of a boundary layer flow have a 
slower response and longer memory to such disturbances with 
the near-wall flow responding much more rapidly. The PJ and 
mainflow components of the WLC, CS, and B models 
somewhat underpredict the data. 

For monotone increasing skew with maximum skew angles 
less than 15 deg, Figs. 3 and 4 show that the PJ and the 
mainflow components of the WLC, B, and CS models show 
similar results. This is partly due to the small value of the 
pressure gradient and its corresponding small effect on the 
three models which include this effect. These four models tend 
to underpredict the measured data with somewhat poorer 
agreement than in the pressure-driven flow for similar skew 
conditions and somewhat larger la I values. 

The WLC transverse model predictions could not be plotted 
for either station 0 26 or 0 18 because of the negative square 
root problem discussed in reference [2]. The CS transverse 
model comparisons in Fig. 10 are poor while the B transverse 
model comparison in Fig. 9 for station 0 18 is relatively good. 

Station 0 14 (20 deg maximum skew) and station 0 12 (25 
deg maximum skew) fall into the second skewing group. For 
station 0 14, Fig. 5 shows the data agrees with the B model 
only in the 20 < y+ < 100 range, while the PJ and mainflow 
WLC models increase this range to 20 < y+ < 300. The 
mainflow CS model shows only fair agreement with the data. 

The poorer agreement for the complex models for station 0 
12 in Fig. 6 reflects the breakdown in the predictive ability for 
the larger skew angles. The station El (also with 25 deg of 
maximum skew) results in reference [2] are similar to the poor 

agreement shown in Fig. 6 here. Since station El has a 
favorable pressure gradient while station 0 12 has an adverse 
pressure gradient, the breakdown in the complex models 
predictive ability is dependent on the magnitude rather than 
the direction of the pressure gradient. The results indicate the 
models tend to lose their predictive ability for maximum 
skewing above 20 deg. 

The transverse CS model in Fig. 10 shows poor agreement 
for both the 0 14 and 0 12 data in contrast to the B transverse 
model for station 0 14 which shows good agreement. The 
WLC transverse model could only be calculated for station 0 
12 and the agreement in Fig. 11 is only fair. 

Stations 0 10 (35 deg skew) and 2 10 (44 deg skew) fall into 
the last skew category. Figures 7 and 8 show that none of the 
models shows good agreement with the data for these 
stations. 

As for the previous data stations, the CS transverse model 
predictions for stations 0 10 and 2 10 are poor. The WLC 
model predictions in Fig. 11 are also poor but the B transverse 
model predictions in Fig. 9 are relatively good. For the large 
transverse velocities for these data, the B transverse model 
agreement is significant and should not be overlooked. 
However, the coordinates of this model tend to result in small 
transverse velocities in the y + regions of expected similarity. 

Summary 

The six data stations discussed in this paper all had 
monotone increasing skew from 7 to 45 deg. As for the 
pressure-driven flows described in Pierce, McAllister, and 
Tennant [2], model and data agreement generally deteriorated 
with increasing skew angle. This would suggest that the 
equilibrium concepts and mixing length theory in which these 
models find their origin are not adequate for three-
dimensional turbulent boundary layers with large and rapidly 
changing crossflow. 

The six simpler models show generally poor agreement with 
the data in the range of primary focus. Only for station 0 12 
does good agreement occur, but in the secondary region of 
comparison, y+ < 50. While the simpler models show 
somewhat better agreement with the data for the pressure-
driven flow [2], these models could not predict the large 
velocity defect behind the step. 

For the complex models, the mainflow CS model shows 
poor agreement with the data. The PJ and mainflow WLC 
and B models tend to show better agreement with the data for 
maximum skewing up to 20 deg. Above 20 deg maximum 
skewing, none of the complex models shows good agreement 
with the data, regardless of the pressure gradient magnitude 
or direction. Poor predictive ability by the PJ and mainflow 
WLC and B models is not attributed to the increased pressure 
gradient magnitude of station 0 10 when compared to station 
0 12 since pressure gradients of similar magnitudes in the 
pressure-driven flow did not result in such relatively poor 
model performance. The pressure-driven flow results in 
Pierce, McAllister, and Tennant [2] indicate that pressure 
gradient input is necessary for more accurate model 
predictions, yet the pressure gradients in this study are ap
parently small enough that their magnitude and/or direction 
is immaterial. 

The transverse CS and WLC models show poor agreement 
with the data for all flow stations. Within the experimental 
uncertainties, the transverse B model shows the best 
agreement with the data. 

Restrictions noted in at least some of these similarity model 
derivations support the limited predictive ability found here 
and in the companion paper on pressure-driven flows. For 
example, van den Berg limits his model to small skew in the 
sense of limited pressure and wall shear magnitude gradients. 
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While it is one of the better complex models tested, its poor 
predictive ability at stations 0 10 and 2 10 is not surprising 
since the y + upper limit of applicability is relatively small. A 
similar reduced range of applicability with a similar decrease 
in predictive ability was also noted in the pressure-driven 
flow. The region of y+ within which this model is proposed as 
valid is shown in the various figures. For the four downstream 
minimum pressure gradient profiles the range of this model 
for both u+ and w+ is quite large. While not explicitly stated 
for other models, it appears that similar restrictions on at 
least skew magnitude, if not pressure gradient, should be 
considered as well. 

The CS and six simpler models do not predict three-
dimensional flows as well as the WLC, B, and PJ models. 
These latter three models take into account significantly more 
flow information than the CS or six simpler models. In 
particular, the six simpler models seem to agree reasonably 
well with all the data for the lower range of y+ < 50 which is 
the boundary layer region where the velocity vector turns 
through a relatively smaller range and is thus more nearly 
collateral, i.e., a sealer-like quantity. Since these models are 
scalar in nature, this small y+ region agreement is not sur
prising. What is somewhat surprising here is the strong 
consistency in much of the data for modest skewing (< 20 
deg), and in some instances even for stronger skewing, to 
follow the two-dimensional-like buffer or transition region 
similarity models in the very near-wall flow. In the two-
dimensional case data in this very-near wall region is 
characterized by more scatter and uncertainty attributed to 
various near-wall effects such as shear gradients, low 
Reynolds number effects, wall proximity effects, turbulence 
effects, etc. This consistency in very near-wall flow is also 
noted in the work of Prahlad [9], Ezekwe [10], Brown [11], 
and some others. 

Discussion and Conclusions 

In comparing the pressure driven results from Pierce, 
McAllister, and Tennant [2] and the shear-driven results of 
this study, the following conclusions may be drawn. 

For monotone increasing skew: 

1. With skewing up to about 15 deg, all of the simpler 
models, the PJ, and the mainflow component of the 
complex models are useful over modest y+ ranges. Both 
the WLC and B transverse models are reasonable, but 
the transverse velocity components are small for this 
range of skew angles. 

2. For skewing greater than 15 deg, the six simpler models 
deteriorate in their predictive ability, although the HJ, 
P, and C models offer some utility in the.y + < 50 range. 
The PJ and the mainflow WLC and B models are 
somewhat better than the CS model for a limited y + 

range with the models which require pressure gradient 
input tending to predict the near-wall profile trends 
more accurately. The B transverse model is somewhat 
better than the WLC model, while the CS transverse 
model is generally poor. 

3. For skewing above 20 deg, none of the 10 models tested 
appeared to consistently predict the measured velocity 
data well. 

For increasing and decreasing skew: 

1. For skews of less than 10 deg, the six simpler models, the 
PJ, and the main flow components of the WLC, CS, and 
B models can be useful over a limited y+ range. The B 
and WLC transverse models appear reasonable but the 

transverse velocity components for this case were so 
small as to offer a weak test of the models. 

It is worth noting the relatively small y+ regions where 
similarity is perceived for the wide range of flow conditions 
surveyed. The region of reasonably predicted similarity is well 
below the y+ of 300 upper limit for nominally zero pressure 
gradient two-dimensional flows (which should be no sur
prise), often with an upper limit of y+ of about 100, 
depending on the pressure gradient, wall shear, and skewing 
in the local flow, but not easily correlated with these 
variables. 

All ten models can trace their origin directly to the classic 
Townsend equilibrium concept for two-dimensional turbulent 
boundary layers and subsequent variations of the classic 
mixing length hypothesis. It appears that skewing in the three-
dimensional case taxes the applicability of this basically two-
dimensional approach with an approximate upper limit of 
15-20 deg of skew. It is encouraging to see the strong 
tendency of many of these data for modest skewing (< 20 
deg), and in some instances for stronger skewing, to follow 
the two-dimensional-like buffer or transition region similarity 
models in the very near-wall flow (y + < 50). This is especially 
clear in the case of the six simpler models where the Spalding 
third order single formula wall law was (arbitrarily) chosen to 
represent the model line. Within this upper skew limit for 
these flows it appears that the local wall shear stress and 
nondimensionalizing shear velocity for the various similarity 
plots are related within a modest uncertainty. This implies 
that at least an approximate magnitude of local wall shear 
stress would be inferred from such similarity models in a 
Clauser chart type of approach as developed by Pierce and 
Zimmerman [12] for at least the simpler similarity models 
reviewed and tested here. This would also imply that indirect 
diagnostic devices which are not strongly sensitive to yaw 
angles (such as small Preston tubes and surface heat meters) 
would, using a /wo-dimensional calibration, also give a 
reasonably good approximation to the magnitude of the wall 
shear stress in such modestly skewed flow as well. Note that 
without the supporting results of this study with directly 
measured local wall shear stresses, such use of a two-
dimensional calibration in a three-dimensional flow would be 
speculative at best. Inferring a local shear velocity with a 
assumed similarity model guarantees a good similarity plot fit 
for the region of velocity data used to infer the shear velocity 
but this goodness of fit should not be taken as evidence of 
accuracy in the shear velocity value. Based on this study which 
used direct force local wall shear measurements it appears that 
such Clauser chart inferences and indirect wall shear 
measurements using two-dimensional flow calibrations can 
give the local wall shear stress magnitudes to about ± 5 to 10 
percent - the uncertainties in this experiment do not appear to 
warrant any narrower limits. 

The same relative insensitivity of yaw which would allow 
the use of such indirect wall shear devices in a skewed flow 
would, however, render such devices as relatively poor in 
indicating the local wall shear or limiting wall streamline 
direction. It would appear that for modestly skewed flows the 
combination of, for instance, a small Preston tube or surface 
heat meter (using a two-dimensional calibration) together 
with an established wall flow visualization technique would 
do a reasonably satisfactory job in mapping a three-
dimensional wall shear field. The combination of an indirect 
wall shear magnitude sensing device and a flow visualization 
technique for direction would be significantly easier to use 
than a direct force sensing three-dimensional wall shear meter 
such as used in this study. 

Finally, as in all graphical evaluations, what one sees is 
wholly subjective, and conclusions tendered are based on 
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these individual perceptions from various frames of reference. 
As a result the strongly interested reader is urged to study 
these and the more complete results in order to form his/her 
own individual conclusion. 
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Blade Boundary Layer Effect on 
Turbine Erosion and Deposition 

As an extension to the inviscid gas flow particle trajectory model presented in 
earlier papers, a complementary model has been developed to establish the effect of 
the blade boundary layer on the trajectories of particles and thus on the resulting 
erosion and/or deposition. The method consists essentially in tracing particles 
inside the boundary layer with initial conditions taken from the inviscid flow model. 
The flow data required for the particle trajectory calculations are obtained by using 
a compressible boundary layer flow computer program. 

This model has been applied to the first stage stator of a large electric utility gas 
turbine operating with coal gas. Results are compared with the predictions of the 
inviscid flow model. It is shown that the effect of the boundary layer on the 
trajectories of particles smaller than 6 \x.m is important. Since the hot gas cleaning 
system of a pressurized fluidized-bed gasifier system is projected to remove particles 
larger than 6 fim diameter effectively, it is concluded that an accurate assessment of 
turbine erosion and deposition requires inclusion of the boundary layer effect. 
Although these results emphasize the relative importance of the blade boundary 
layer, the absolute accuracy of the method remains to be demonstrated and is 
thought to be largely dependent on the basic data concerning the erosivity and 
sticking probability of particles. 

Introduction 
The successful development of the coal based energy 

projects which involve the concept of combined cycle power 
generation is dependent to a large extent on the efforts to 
protect the high speed turbines against erosion, corrosion and 
deposition caused by particulate matter present in hot 
combustion gases. When particles of diverse 
physical/chemical formation find their way to turbine sur
faces, particularly to blade surfaces, they may give rise to one 
or a combination of these problems. The quantity and quality 
of particles arriving at a certain point on the surface along 
with the physical and chemical characteristics of the surface 
and the gaseous environment determine the nature and the 
extent of the damage. 

Although erosion, corrosion, and deposition appear to be 
local phenomena occurring in the immediate vicinities of the 
locations where particles reach the blade surfaces, previous 
histories of particles are of prime importance in the 
establishment of not only the locations but also the conditions 
of contact with surface, and thereby, in the evolution of the 
subsequent "surface" phenomena. Therefore, it is not sur
prising to see that a great deal of research is now directed 
toward understanding the mechanisms which bring particles 
in touch with blade surfaces. 

Particles may be transported to blade surfaces under the 
action of a wide variety of forces. Among the most important 
of these forces are inertial force arising from particles' own 

acceleration, viscous drag force exerted by gaseous medium in 
motion, diffusive forces due to molecular activities, turbulent 
eddies and temperature gradients, gravitational force, 
buoyancy force, electric and magnetic forces. 

The above list, despite being far from exhaustive, serves to 
illustrate the complexity of the problem. Attraction and 
adhesion forces between particles have been excluded from 
the list considering that particle concentrations are bound to 
be very small in practical applications. Shear lift forces and 
material attraction forces between particles and blade surface 
are again neglected on the basis that these forces will come 
into play only when particles have come within touching 
distance to the surface. 

The classical approach to the problem of particle motion 
has been to write Newton's second law in the form 

£F,=/n a (1) 

Contributed by the Fluids Engineering Division and presented at the Joint 
AIAA/ASME Fluids, Plasma, Thermophysics, and Heat Transfer Conference, 
St. Louis, Mo., June 7-11, 1982, of THE AMERICAN SOCIETY OF MECHANICAL 

ENGINEERS. Manuscript received by the Fluids Engineering Division, August 5, 
1982. 

where the right-hand side represents the inertial force and the 
left-hand side is the sum of all the other forces acting on the 
particle. 

Obviously, the resulting equation is extremely complicated 
and will not lend itself to practical solution, if all the forces 
mentioned above are to be included. Fortunately, however, it 
is possible in most instances to neglect the majority of these 
forces and to consider only the prevailing few mechanisms. In 
fact, electric and magnetic field forces can be directly omitted 
in the absence of such fields. In gas turbines, the gravitational 
force turns out to be quite negligible in comparison to the 
inertial and/or diffusive forces, because turbines are being 
made to operate at very high gas velocities in the spirit of the 
modern technological trends toward hotter and more efficient 
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turbines. Buoyancy forces are also insignificant if the particle 
density to gas density ratio is very large. 

The problem is amenable to further simplification in that 
there is usually little interaction between diffusive and inertial 
transport mechanisms. Therefore, separate treatments of 
these mechanisms are usually permissible. Very small particles 
(typically in the submicron range) are carried to blade surfaces 
by diffusion, whereas large particles are captured through 
direct inertial impactions. 

In earlier papers [1, 2, 3] we presented models that calculate 
inertial and diffusive motions of particles in gas turbines. 

The inertia model solves a set of equations which expresses 
a balance of inertial and drag forces and calculates trajec
tories of particles in blade passages based on inviscid flow 
data. This model was used [1] to determine the frequency and 
locations of particle impacts with the blades of a large electric 
utility turbine. The resutling erosion damage was calculated 
through use of a semiempirical erosion model assuming that 
all particles rebound. There are two underlying assumptions 
in this model. First of all, as evidenced by the omission of 
diffusion terms from the equations of motion, particles are 
assumed to be large enough so that diffusion has negligible 
influence on their motion. Secondly, it is assumed, implicitly 
through the use of inviscid gas flow data in calculations, that 
relaxation times of particles are too large for viscous boun
dary layers around blades to significantly effect their 
trajectories. The numerical application of the model indicated 
that the latter assumption may not be valid for particles 
smaller than 10 /tm in diameter. 

The inertia model was used [2] to estimate the erosion 
damage on the first stage rotor blades of a redesigned turbine 
tested by the Aeronautical Research Laboratories of Australia 
[4]. The applicability of the model was tested by comparing 
the model predictions with the experimental results. The 
predicted erosion distributions along the blade surfaces 
exhibited good agreement with the observed erosion patterns. 

The diffusion model [3] considers laminar and turbulent 
diffusion of small particles inside blade boundary layer. 
Inertial deviation of particles from mean streamlines is 
neglected and particle transport is assumed to take place by 
convection and diffusion. Inertia is taken into account merely 
in establishing the condition on particle flux near surface 
according to the stopping distance theory of Friedlander and 
Johnstone [5]. Application of the diffusion model showed 
that the stopping distances corresponding to particles smaller 
than 1 /xm in diameter are small in comparison to the local 
boundary layer thicknesses. These results appear to justify the 
assumption that inertial deviations of particles in this size 
range are negligible. Near the trailing edges of blades, the 
stopping distance of 3 /mi particles reaches the local boundary 

layer thickness. This means that diffusion has negligible 
contribution to collection of larger particles, because inertia 
will be sufficient anyway to drive these particles all the way to 
surface. However, it is imperative to note that such particles 
may still spend considerable time in blade boundary layer, 
and consequently, their impact conditions may differ from 
those predicted by the inviscid-flow inertia model. 

The above results lead to an interesting size spectrum of 
particle transport. It appears that transport of particles 
smaller than about 1 /xm in diameter is solely governed by 
diffusion. 1-3 /xm particles are transported by diffusion and 
inertia. Diffusion loses its importance in motions of particles 
larger than about 3 /xm. Furthermore, it is understood that 
inertial motions of particles in the size range 1 /im-10 /tm will 
be influenced to a varying degree by the presence of blade 
boundary layer. Trajectories and impact conditions calculated 
by the inviscid flow inertia model can be quite erroneous for 
these medium size particles. 

The objective of the present study is to present a model 
which calculates inertial motions of particles inside blade 
boundary layers. 

Equations of Inertial Particle Motion 

In the presence of inertial and viscous drag forces alone, the 
equations of particle motion in a blade passage can be written 
as [6] 

x=G{U-x) 

.. G • 2r . 
6= - (V-rd) (8 + 03) 

r r 

r=-Gr+r(6 + u>)2 

(2) 

The coordinate system is shown in Fig. 1. x, 8, and r denote, 
respectively, the axial, tangential and radial coordinates of 
particle. U and V are, respectively, the axial and tangential 
gas velocity components relative to the blade under con
sideration. In axial turbines the radial gas velocity component 
is small. ( ) denotes differentiation with respect to time, w is 
the angular velocity of the blade. 

The coefficient G in equations (2) is given by 

G=-C D Re 
4 Ppdj 

(3) 

where /x, pp, ~»~ „p 
particle diameter, respectively. Re is the particle Reynolds 
number defined based on the velocity difference lWg - W p I 
as follows 

R C _ P 4 , I W , - W , I 
(4) 

Nomenc la tu re 

Cr, 

dP 

E 
F, = 

G = 

acceleration vector, m/s2 

viscous drag coefficient Re = 
given by equation (5) 
particle diameter, m s = 
erosion rate, mVkg 
forces acting on particle 
other than inertial force, N U = 
coefficient defined by 
equation (3) V = 

K,, K-, = ductile and brittle mode 
amplitudes of erosion, W = 
(m3/kg)/(m/s)2-5 

velocity exponent of erosion Wg = 
particle mass, kg 
coordinate normal to blade Wp = 
surface,m 

r = radial coordinate, m x = 

L l i 

m 
mp 

n 

particle Reynolds number 
defined by equation (4) 
surface coordinate 
measured from blade 
leading edge, m 
axial gas velocity com
ponent, m/s 
tangential gas velocity 
component, m/s 
particle impact velocity, 
m/s 
gas velocity vector relative 
to blade, m/s 
particle velocity vector 
relative to blade, m/s 
axial coordinate, m 

y 
a 

& 
ft 
A 

V 

8 

A* 
* 

P 
Pp 
a) 

tangential coordinate, m 
angle between surface 
tangent and X-axis, deg 
particle impact angle, deg 
erosion reference angle, deg 
local momentum thickness, 
m 
Levy-Lees coordinate 
defined by equation (6) 
tangential coordinate, rad 
viscosity, N-s/m2 

Levy-Lees coordinate 
defined by equation (6) 
gas density, kg/m3 

particle density, kg/m3 

rotational speed, rad/s 
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Fig. 2 Flow geometry 

Fig. 1 Coordinate system for particle motion in axial turbomachine 

where p denotes the gas density, Wg the gas velocity and Wp 

the particle velocity. 
CD appearing in equation (3) is the drag coefficient and is 

equal to 24/Re for Stokes' flow. Correlations obtained by 
Morsi and Alexander [7] are used for large Re: 

Calculation of Particle Trajectories 

A computer program was developed to calculate particle 
trajectories in blade boundary layers. The program accepts 
boundary layer flow data generated by the Cebeci-Smith 
program in the Levy-Lees coordinate system and transforms it 
back into the x—y system. A typical example of this trans
formation is given in Fig. 3 where i and j denote vertical and 

CD = 24/Re 

CD = 22.73/Re + 0.0903/(Re)2 + 3.69 

Cfl = 38.80/Re-12.65/(Re)2+0.36 

Cfl = 46.50/Re-116.667/(Re)2+0.61667 

CD =98.33/Re - 2778/(Re)2 + 0.3644 
CD = 148.62/Re-47500/(Re)2 +0.35713 

Equation (2) with the variable coefficient G given by 
equation (3) must be solved numerically for each particle 
entering blade boundary layer. The geometry of boundary 
layer flow is illustrated in Fig. 2 where s denotes the surface 
coordinate measured from the leading edge, n is the coor
dinate normal to the surface, and x and y are the axial and 
tangential coordinates (y = rd). a is the angle that a surface 
tangent makes with the x-axis (tana=dy/dx). 

Calculation of Boundary Layer Flow 

The "mean field closure type" Cebeci-Smith computer 
program [8] is used to calculate two-dimensional compressible 
boundary layer flows around axial turbine blades. The outer 
flow conditions required as input to this program are obtained 
from the Katsanis in viscid flow computer program [9]. The 
Cebeci-Smith boundary layer program solves the continuity, 
momentum and energy equations in mass averaged form with 
respect to a coordinate system obtained by the Levy-Lees 
transformation. The Levy-Lees transformation is written as 

dZ = peneUeds 

dv=-(2Wdn 

where pe, /xe, and Ue denote, respectively, the density, 
viscosity, and velocity of gas at the outer edge of the boun
dary layer. 

In the Cebeci-Smith program the location of the transition 
point is specified as an external input by the user. For the 
calculations presented here, the transition location input was 
estimated by using Horlock's criterion [10]. 

_ PeUeA _ 
(ReA)transition _ " — 250 (7) 

where A is the local momentum thickness. 

(0<Re<0.1) 

(0 .1<Re<l ) 

( K R e < 1 0 ) 

(10 < Re < 100) 

(100 < Re < 1000) 
(1000 < Re < 5000) 

(5) 

horizontal mesh line indices, respectively. In this example, 60 
vertical and 100 horizontal meshlines are used. It is noted that 
the spacing between horizontal mesh lines is decreasing 
toward the blade surface to provide a better account of large 
velocity gradients near solid boundary. It is also noted that 
the rectangular grids of the Levy-Lees coordinate system 
transform into a curved mesh structure in the x—y coordinate 
system. The flow data is known at the mesh points of this 
structure. 

The transformation of the geometry and the gas velocity 
components into the x—y plane is actually carried out in two 
steps. First, integrating equations (6) points in the Levy-Lees 
plane are transformed into the surface coordinate system 
defined by the coordinates s and n. The velocity components 
are unaffected by this mapping. In the second and final step, 
points and velocities are mapped into the x—y plane by 
making use of the local surface angle, as described in Fig. 4. 

Since the gas flow is given in discrete form, integration of 
the particle equations of motion (2) is not a straightforward 
task. At each step of integration, gas properties and velocity 
components must be interpolated. A three-point interpolation 
method is used for this purpose. Figure 5 illustrates a typical 
situation where the particle is enclosed by a triangle having its 
vertices at the mesh points (/, j), (/, j - 1) and ( / - 1, j). Any 
quantity P can, then, be interpolated by using the following 
equation [11]. 

P=alPiJ+a2PiJ_l+a3Pi-. u (8) 
where 

« i = 

a2 = 

a3 = 

Hxu 

K*/-l 

I(*u 

. , -x)0' / -

j-x){y,j 

-x)(yij-i 

u-y) - (Xj-u-x) (yiJ-l -y) \/d 
-y) - (xij-x) (yt-ij-y) \/d 

l-y)-(xiJ.1-x)(yiJ-y) \/d 
d= (xu_i -XijWi-ij-yiJ-iXi-u-Xij) (yiJ-.l -yu) 
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Fig. 3 Finite-difference mesh structure 

The analysis is carried out as follows. The inviscid flow 
trajectory program [1] is used to calculate the trajectory of a 
given particle in the blade passage until the particle crosses the 
boundary layer edge. The coordinates and velocity at the 
point of entry to the boundary layer are specified to the 
boundary layer trajectory program as initial conditions. The 
fluid properties at this position are calculated by locating the 
triangle enclosing the particle and by applying the three-point 
interpolation equation (8). Once the coefficient G is 
evaluated, equations (2) are integrated by using Hamming's 
algorithm [12] to yield the new position and velocity. The new 
data is used to proceed a step further. This routine is con
tinued until the particle reaches the blade surface. If the 
particle goes beyond the surface, the integration step is 
systematically reduced and the equations are reintegrated 
from the last position until the particle lands on the surface. 

Application to the First Stage Stator of a Large Turbine 

The boundary layer inertia model was applied to the first 
stage stator of the electric utility turbine considered in our 
earlier papers [1, 3]. 

X=X0-nsinc* U=Ws-Wnsincx 

Y= Y0 * n cos<x v= Ws*Wn a s * 

Axial Coordinate 
Fig. 4 Transformation from s-n coordinate system into x - y coor
dinate system 

Axial Coordinate, x 

Fig. 5 Triangular cell used in gas data interpolation 

The velocity distribution along the pressure surfaces of the 
stator blades calculated by the Katsanis program [9] and the 
corresponding boundary layer thickness distribution 
calculated by the Cebeci-Smith program [8] are shown in Fig. 
6. 

Figure 7 shows the trajectories of 3 fim particles (2500 
kg/m3 density) in the stator passage based on inviscid flow 
data. The trajectories of these particles calculated with the 
boundary layer inertia model is shown in Fig. 8 in a very small 
region (0.009 m x 0.012 m) near the trailing edge of the blade 
pressure surface. 

The velocities at which particles in the 2 ̂ m-6 ftm size range 
impact the blade surface are shown in Figure 9. It is noted that 
large particles having high inertia lag behind gas velocity 
variations (i.e., acceleration along blade surface or 
deceleration across boundary layer), while small particles 
possessing low inertia follow the velocity variations closely. In 
the limit, the high inertia particles are expected to impact the 
blade with the same velocities at which they enter the blade 
passage. On the other hand, the low inertia particles are 
expected, toward the limit, to reach the surface at creeping 
velocities due to the damping effect of the boundary layer. 

The impact angles shown in Fig. 10 suggest that larger 
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Fig. 7 Trajectories of 3 pm particles calculated based on inviscid flow 
data 

particles impact the blade at larger angles, and that the dif
ference between the inviscid and the boundary layer model 
predictions increases as particle diameter decreases. 

The effect of the boundary layer on particle impact con
ditions can be better seen when the impact velocities and 
angles at a given point on the surface are plotted as a function 
of particle diameter. Figure 11 gives these plots at an axial 
distance 0.10 m from the leading edge. It is clear that the 
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Fig. 9 Particle impact velocities along blade pressure surface 

boundary layer will have negligible effect on particles larger 
than 10 nm. 

Erosion Rates. To see the effect of boundary layer flow on 
erosion, the semiempirical erosion model used in the inviscid 
flow inertia model [1] is assumed. 

E=Ki(Wcast3)msmnP+K2(Wsmf3)m for 05ft , 

E=Kl(Wcasf3)m +K2(Wsm0)m for /3 > ft, 

where W and /? are, respectively, the impact velocity and 
angle; K{ and K2 are the amplitudes, respectively, of ductile 
and brittle modes of erosion; m is an exponent expressing the 
velocity dependence of erosion; ft, is a reference angle and 
« = 2ir//30. 

The following data [1] is used in the calculations. 

(9) 
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Fig. 13 Erosion ratio at trailing edge as a function of particle diameter 

Results with and without boundary layer correction are 
compared in Fig. 12 which gives erosion rates as a function of 
axial distance from the leading edge. Figure 13 shows the ratio 
of the erosion rates at the trailing edge calculated by the 
boundary layer and inviscid flow models as a function of 
particle diameter. It is clearly seen that negligence of boun
dary layer effects in the calculation of the erosion rates due to 
particles smaller than 10 jtm may lead to very serious errors. 
The erosion ratio falls below 75 percent for particles smaller 
than 6 /xm. 

Arrival Rates. It is of interest to compare the particle 
arrival rates calculated by the present model with the diffusive 
arrival rates [3]. For this purpose, particle impact frequency is 
converted into "deposition" velocity defined as the ratio of 
particle arrival flux to inlet particle concentration. This 
conversion is accomplished by multiplying the local impact 
frequency per unit surface area by the inlet volume flow rate 
per blade passage. 

Figure 14 shows the deposition velocity at trailing edge as a 
function of particle diameter in the range 0.01 /xm-10 jtm. It is 
noted that particles larger than 3 /*m reach the blade trailing 
edge predominantly by their own inertia while particles 
smaller than 0.5 /mi are transported by diffusion. In the 
transition range (0.5 /xm-3/mi), both mechanisms are in ef
fect, in which case the assumptions of the diffusion and 
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Fig. 14 Deposition velocity at trailing edge as a function of particle 
diameter 

inertia models become questionable. However, the curve 
obtained by direct superposition of the results appears to be 
connecting the diffusion and inertia regimes smoothly. 

Conclusions 

A computer model calculating particle trajectories in blade 
boundary layers has been developed. This model determines 
frequency, angle and velocity of particle impacts with blade 
surfaces and can be used to predict erosion and/or deposition 
rates when combined with information regarding the erosion 
response of the blade material and the sticking probability of 
particles to the surface. The model accepts flow data 
calculated from computer programs available in the public 
domain. The authors would caution that the flow calculations 
neglect three-dimensional effects such as end wall boundary 
layers, passage vortices and radial flows. Ulke and Rowleau 
[13] reported that these effects may be significant. 

Application of the model to a large-scale gas turbine has 
indicated that the effect of boundary layer on the trajectories 
of particles smaller than 6 pm is important. Since a great 
majority of particles leaving the particle filtration system of a 

pressurized fluidized-bed gasifier system are expected to be 
smaller than 6 /*m, it is concluded that a reliable assessment of 
turbine erosion/deposition requires incorporation of 
boundary layer effects. 

Comparing the particle arrival rates at blade surface as 
calculated by the boundary layer inertia model with the 
diffusive arrival rates presented in an earlier paper [3], it has 
been shown that particles larger than 3 /xm reach blades by 
virtue of their own inertia while particles smaller than 0.5 iim 
are transported by diffusion. In the transition range (0.5 
itm-3 /xm), where inertial and diffusive mechanisms act 
together, the assumptions of both models become 
questionable, and yet, direct superposition of results appears 
to provide a smooth transition between diffusion and inertia 
regimes. 

All the comparisons in the present paper are made to 
models previously published by the same authors. Therefore, 
the results should be interpreted as to indicate the relative 
importance of the blade boundary layer. The absolute ac
curacy of these predictions remains to be tested ex
perimentally and is thought to be largely dependent on the 
basic data concerning the erosivity and sticking probability of 
particles. 
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Behavior of Air Bubbles in an 
Axial-Flow Pump Impeller 
Motion of air bubbles in a high-specific-speed axial-flow pump impeller was 
analyzed on the basis of measured streak lines of air bubbles in the impeller. The 
results were compared with those obtained by a numerical solution of the bubble 
motion equations for three dimensional flow. Governing factors of the bubble 
motion are the drag force due to the surrounding water and the force due to the 
pressure gradient. Trajectories of the bubbles deviate somewhat from the 
streamlines of water, and the amount of the deviation is dependent on the bubble 
diameter and also on specific-speeds of the pumps and flow rate of water. 

Introduction 
Knowledge of the behavior of air bubbles in centrifugal 

pumps has recently become increasingly important, relevant 
to safety analyses for the loss of coolant accidents in 
pressurized water reactors, and also to the improvement of 
waste-treatment plants where sewage pumps conduct air-
water mixtures. In order to investigate the behavior of 
bubbles entrained in the pumps, the previous paper [1] ob
tained the fundamental motion equations of air bubble 
flowing through an impeller of arbitrary shape, and gave a 
numerical procedure to evaluate the resulting bubble motion. 
This method was also applied to the flow in a radial-flow 
impeller pump, and the effects of the bubble diameter on its 
motion were discussed. 

In the present paper, the same method is applied to an 
axial-flow pump with high specific-speed, and the flow 
pattern in the impeller is clarified under air admitting con
ditions. The results of the numerical analysis coincides well 
with experiments. The bubble motion in the impeller is also 
discussed in relation to the specific speeds and water 
capacities of pumps currently used. 

Experimental Apparatus and Measured Results 
Experimental Apparatus. The general arrangement of the 

experimental apparatus is the same as that used in the 
previous study [2], The impeller of the axial pump is designed 
on the base of a free vortex flow pattern in the impeller. The 
pump discharges 8.80 mVmin of water (<£ = 0.260) at its 
normal speed of 1340 rpm under the head of 3.28 m; the 
specific speed being 1630 (rpm, m, mVmin). In order to 
observe the motion of bubbles in the pump, the upper parts of 
the casing were made transparent. The piping system in
cluding the pump was made in a closed type in order to enable 
adjustment of the field pressure. 

Air was drawn from the atmosphere into the piping system 
as is shown in Fig. 1. The entrained air is transformed to fine 

Contributed by the Fluids Engineering Division and presented at the ASME 
Applied Mechanics, Bioengineering, and Fluids Engineering Conference, 
Houston, Texas, June 20-22, 1983, of THE AMERICAN SOCIETY OF MECHANICAL 
ENGINEERS. Manuscript received by the Fluids Engineering Division, December 
22, 1981. Paper No. 83-FE-9. 

bubbles with which the locus of the flow in the impeller can 
easily be traced. The air tube was made adjustable to accord 
with various axial and circumferential locations. 

Flow and Experimental Conditions of Pump. In advance of 
the experiments using air admission, the distributions of water 
velocities at sections both just before and after the impeller 
were measured in a single phase flow by a Pitot tube with 
three holes. For water capacity lying in the range of 0.20 = <t> 
^ 0.290, the meridian streamlines were nearly parallel to the 
pump axis. The data thus obtained, of the flow angle at the 
impeller outlet, was used to decide boundary conditions for 
the numerical calculations of the water flow. 

The air entrained at the upstream section of the pump rises 
upward in the suction pipe and gathers at the top as is in
dicated by hatch lines in Fig. 1. To avoid the effect of this 
accumulation of air, an opening of the air pipe was provided 
directly above the pump axis and 35 mm ahead of the im
peller, where the flow was not influenced by the upstream 
bend of the pump casing. The air admission opening was 
placed at a radial distance of /- = 98.75 mm (r/r2= 0.806), 

A l r Guide vane 

Tube for air 
Injection 

Casing 

Impeller 

Fig. 1 Axial-flow pump employed 
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uniform size at the impeller entrance. The diameters of the
spheres were measured to be of the order of 0.5 -0.8 mm in
the running condition mentioned above [2]. At the normal
pump speed (1340 rpm) and with low air quantity (the
volumetric ratio of air to water at the pump inlet being
somewhat less than 2 percent), the diameter of the bubbles
was measured to be about 0.5 mm. When an air pipe having
an inside diameter of 0.2 mm was employed, the diameter of
the bubbles ranged from 0.4 mm to 0.6 mm at the pump speed
of 1020 rpm.

I--Blade spacing
I. Ll L2

Position of
bubble creation

M

Impeller
SUet

fo!}
Sf(je

A B p~ssu
(a) (b) SfJe

Ll : Discharging range of bubbles e
L2 : Non-discharging range of bubbles

Fig.3 Streak lines of bubble generated from the air tube located at the
various positions relative to blades

Fig.2 Streak lines of bubbles in the impeller

slightly inside the impeller tip circle (r2 =122.5 mm). At this
point the effects of the leakage flow and cavitation which
might occur in the clearance between impeller blade and
casing could be avoided.

Bubble trajectories were recorded at the normal capacity <p
= 0.260 of the pump, and at a speed of 1020 rpm. This speed,
being considerably lower than the normal but it preserving the
similarity low, was suitable for obtaining clear photographs
of the bubble motion in the impeller.

Air bubbles entrained in the suction pipe are generally quite
large, but they are crushed into finer spheres with nearly

Experimental Procedure. The bubble flows were recorded
photographically under stroboscopic lighting. When the
pressure inside the pump was lowered beneath a certain
critical value, (Ps - Pa) / pg being equal to - 0.54 m when
expressed in the relative suction head J, the detachment of air
from the air pipe becomes periodical with a regular time
interval, as shown in Fig. 1. An example of the photographs is
shown in Fig. 2, in which a row of the bubbles exhibits a
streak line of the flow in the impeller. The thick solid line in
the figure shows an averaged locus of the streak line, as is
mentioned later. The broken line indicates the streak line

____~ Nomenclature

A

f:J{i

M
N

P

effective discharging area of
impeller outlet
bubble diameter
Basset force vector
force vector due to flow
resistance
force vector due to pressure
gradient
force vector due to ac
celeration of apparent mass of
a bubble
buoyancy vector due to the
difference in densities between
water and air
pressure head difference
between arbitrary positIOn
and pump inlet = (P 
Pi)/pg
mass of a bubble
number of bubbles situating
on a streak line
absolute pressure referred to
pump centerline height

Pa
Pi

Ps
Q
r

R
Re

I
f..1

T
u
V

Vw

w
W

atmospheric pressure
total pressure of pump inlet
measured on its centerline
level
suction pressure of pump inlet
pump discharge
radial distance
radial coordinate of a bubble
Reynolds number based on a
bubble velocity relative to
water =dIV-WI/v
time
time required for shift of
bubble between two neigh
boring streak lines
period of bubble discharge
peripheral speed of impeller
velocity vector of a bubble
velocity component of a
bubble in the direction of
water flow in a rotating flame
velocity vector of water
magnitude of water velocity in
a rotating system

z axial distance
Z axial coordinate of a bubble
p density of water
() angular coordinate

f..() circumferential distance of
neighboring streak lines

e angulC!r coordinate of a
bubble relative to impeller
blade

v - kinematic viscosity of water
<p dimensionless expression of

pump flow rate, Q/A U2

1/; angular coordinate of bubble
referred to stationary co
ordinate system = e + wI +
1/;0

w = angular velocity of impeller

Subscripts

o initial condition of bubble
2 impeller tip
a absolute coordinate system
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obtained by the numerical calculation described later, and the 
chain line exhibits a streamline of the absolute flow path. A 
considerable discrepancy between these lines is seen due to an 
unsteady flow nature in the impeller passage. 

In this study, the flow analysis was made on the basis of the 
streak line with use of the pitch of each bubble on the line. 
The ascending velocity of the bubbles due to the buoyancy is 
negligibly small compared with the through flow velocity, and 
the bubbles can be assumed to move on a cylindrical surface. 
Since the locus of flow on the photographic plate receives 
some distortion caused by projection of the cylindrical surface 
against a plane, a correction is necessary. When the cylin
drical surface is developed in a 8 — z plane, rows of air 
bubbles corrected for the deformation can be obtained as is 
shown in Fig. 3(a). 

If the pressure at the air tube opening exceeds a critical 
value, the tube does not continuously release the air bubbles in 
the downstream region as shown in Fig. 3(b), and there is a 
range where air is not discharged, expressed by the angle L2. 
In the discharging range of bubbles, the number of bubbles on 
each streak line is not the same, but varies with the angle 8. 
This inequality is due to the effect of the impeller blade 
motion on the pressure at the air pipe opening. 

An example of the pressure measured by a piezometric 
transducer is shown in the upper part of Fig. 5, in which the 
pressure difference (p —pa) I pg is plotted against 8, when the 
relative suction head (ps —p„) I pg is -0 .10 m. In this figure p 
is the air opening pressure and 8 denotes the angular distance 
of the opening, measured from the leading edge of an impeller 
blade. The pressure is seen to change sinusoidally. In the 
lower part of the figure, the numbers of bubbles generated (N) 
are plotted against 8. The discharge of the bubbles can be 
observed only when the orifice pressure is lower than a critical 
value, namely, when the discharging orifice is not near the 
impeller blades. Since N increases linearly with 8, the period 
of bubble discharge T remains unaltered during the bubble 
discharge. Let the proportional constant between N and 8 be 
k, the period Tis given by the relation T = l/ku> (= 0.568 ms). 
In Fig. 4 the relationship between TV and 8 for the different 
suction pressure head is also plotted. The proportionality 
between N and 8 is seen to be established independently of the 
suction head. This relationship was used for determining the 
bubble trajectories from the observed data. 

Method of Analyzing the Experimental Results. The 
successive locations of air bubble (by which the streak line of 
the bubble is decided) tend to scatter in the downstream 
region, and some treatment is necessary to make the data 
smooth enough for the further calculation. In this study, the 
mean streak lines were decided by use of multiexposure 
photographs. On a single flash photograph taken at the same 
location as the multiexposure photographs, each bubble 
position can be viewed as the endpoint of a perpendicular 
segment to the mean streak line obtained above. 

If we let the bubbles be shifted from row A to row B by the 
impeller rotation in a small time A ( ( = A8/oi), as shown in 
Fig. 3(a), then the point P on row A will move on the row to 
the point Q downstream of point P ' . The distance between 
the two points P ' and Q is the pitch of the bubble, At/T. If 
the circumferential distance of neighboring streak lines, A8, is 
sufficiently small, the relative velocity of the bubble at _th_e 
point P can be graphically found by the relation of V = PQ 
/At. This calculation was carried out by use of a computer 
with the data recorded for each bubble row. The bubble 
position at each step (At/T) was estimated by use of 
cubic spline interpolation. The accuracy of the calculation 
depends on Ad. In this calculation, we selected thirty bubble 
rows for one impeller pitch and made the distance Ad ap
proximately equal to 3 deg. Uncertainties for the resulting 

Li : Discharging range of bubbles 
L2 : Non-discharging range of bubbles 

Fig. 4 Relationship between the location of air tube and the number 
of bubbles generated (Uncertainties for N, B, and the relative suction 
head are ±0.2, ±0.2 deg, and ±0.01 m, respectively) 

Position of bubble creation (Z-Zo) 

Streak line: Experiment, Calculation(d0=0.5) 

Relative velocity vector: -Experiment, ^-Calculatlon(d0-0.5m°') 

Relative streanline of water (calculation)'-
Fig. 5 Streak lines and relative velocity vectors of air bubbles (Un
certainties in e and z for the streak lines are ±0.2 deg, and ±0.3 mm, 
respectively) 

velocity V and the relative flow direction are ±1.3 m/s, and 
±5.5 deg, respectively. 

Measured Values of Babble Velocities. Examples of the 
mean streak lines measured are shown by solid lines in Fig. 5. 
As the bubbles flow down the impeller, the streak lines tend to 
shift slightly toward the direction of impeller rotation. The 
bubble diameter in this case was measured to range from 0.4 
mm to 0.6 mm. As an example of the numerical calculation 
which will be described later, the calculated streak lines of 
bubbles having a diameter of 0.5 mm at the initial section are 
shown by broken lines in Fig. 5. A slight discrepancy in the 
observed and calculated results is seen in the downstream 
sections. This is due to the integration error in the numerical 
calculation, but it may be considered that both results are 
generally in a good agreement in the available range. Also in 
Fig. 5, the relative bubble-velocity vectors obtained by ob
servation are shown by solid lines, and those calculated by the 
numerical method are shown by broken lines. Throughout the 
impeller region, both the magnitudes and directions seem to 
coincide fairly well. Only in the negative side of impeller inlet 
can a slight discrepancy be seen. This is explained by the fact 
that the intervals of the bubbles on the streak line become 
incorrect in that region, due to the effect of the bubble break 
down, which is caused by some large external forces acting at 
the impeller entrance. 

Numerical Procedures and Results 

Numerical Procedure. In order to calculate the movement 
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Fig, 6 Trajectories of air bubbles in a meridian section 

of air bubbles in an axial-flow pump, we first determine the 
flow condition of the water. Then we set an air bubble free 
within this flow field, and analyze the resulting bubble 
trajectory [1]. It is assumed that the bubbles are small in size 
and number and have no mutual interference in their motions. 
When the quantity of air admitted into the pump is small, 
these assumptions are satisfied well. If the flow of water in the 
pump is assumed to be inviscid and incompressible and has an 
axisymmetric stream surface, then the flow can be calculated 
by a quasi-three dimensional method [3,4]. 

The equation of motion for a single air bubble in a 
stationary frame is given by 

M(DaV/DaT): ?d + ¥p+¥y + ¥l + Ffl (1) 

The details of the further calculations are described in the 
paper in reference [1] (equation (5)). 

If it is assumed that the initial diameter d0 of the bubble at 
the flow passage entrance is given and its initial velocity is 
same as the water velocity, then the three dimensional bubble 
accelerations are calculated by equation (17) in reference [1], 
and the bubble position and velocity, as well as forces acting 
on the bubble after every infinitely small time interval, can be 
obtained. This procedure is repeated until the bubble flows 
out of the region considered. The details of the further 
numerical procedures are described in reference [1]. 

Bubble Trajectories in Meridian Sections. As described 
before, a bubble essentially flows down on a stream surface of 
revolution (z — d surface). We first discuss the bubble 
trajectory in a meridian section (z — r surface) perpendicular 
to the z — 6 surface. Figure 6 shows the change in the radial 
coordinate of a bubble R in the impeller passage, when the 
pump is operated at the best efficiency point discharge, </> 
= 0.260. The top figure represents the results for a bubble 
starting at the position SI (central zone of the impeller 
passage), and the middle and the bottom figures are the 
results for the point S5 (suction side of the blade) and the 
point S8 (pressure side), respectively (see Fig. 8). In the 
calculation, the initial position of the leading edge of the 
impeller was taken to be i/'o =0, (see Fig. 1), and the flow of 
the bubble can be seen only in the region of 6 > 0, namely, in 
the upper half of pump passage (shaded region in Fig. 1). In 
this region the bubble is driven toward the impeller tip due to 
the buoyancy acting on it, and hence, R/R0 > 1. The 
meridian streamlines of water are of course nearly horizontal, 
as is indicated by the dotted line, and R/R0 = 1. The change in 

Dlr 
of rotat 

treom 
of water 
AHt - Constant 
v„/w - Constant 
(3o - 0.5 mm) ~ 

Fig. 7 Stream lines and isobaric lines of water in a stream surface of 
revolution 
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of bubble I V N ^ ^ ^ ^ > ^ - w w t • 
Time line of water t̂=o.c>25 

o Bubble positions after every 0.005 seconds 
Fig. 8 Comparison of air bubbles trajectories with water stream lines 

R/R0 is greatest when the bubble is released from the point S8 
and flows down along the pressure side of impeller. But the 
amount of the radial distance variation is extremely small and 
the change in R/R0 can be neglected. 

Bubble Trajectories on a Stream Surface of Revolution. 
The relative streamlines of water in a stream surface of 
revolution are shown in Fig. 7, when <t> = 0.260. The 
streamlines, shown by thin lines, lie almost parallel to the 
blade profile. In the same figure, the isobaric lines 
(A//, = const) are shown by broken lines which lie close 
together near the leading and trailing-edges of the impeller, at 
which the pressure gradient becomes high. 

When bubbles having an initial diameter of d0 = 0.5 mm 
are released from various points in the initial section 35 mm 
ahead of the impeller, the trajectories of the bubbles follow 
the loci as shown by solid lines in Fig. 8. In this figure the 
water streamlines are shown by broken lines. When the 
bubbles start from different positions S1,S2, . . . , S10 in the 
initial section, consequent positions of each bubble after every 
0.005 seconds are denoted by circular marks, and the 
corresponding positions of water particles are indicated by the 
dotted line curves. The bubbles are seen to move nearly 
parallel to the water particles, and to leave the impeller in 
approximately the same time. 

In the pressure side region the bubble trajectories lie nearly 
parallel to the water streamlines but in the suction side they 
are shifted a little towards the blade. The motion of a bubble 
in the impeller is governed substantially by the drag force Fd 
and the force due to the pressure gradient F^ as described in 
the latter section. The force Fp acts normally to the isobaric 
lines denoted by the broken lines in Fig. 7, and in the pressure 
side of the impeller ¥p are in the direction of water flow, but 
in the negative side F^ makes approximately a right angle with 
the path of water. Hence, bubbles which flow through the 
central and suction side zones of the impeller passage 
(corresponding to the bubble motions started from the initial 
positions of S2 ~ S6) are driven toward the lower pressure 
side in the passages at the inlet and outlet of the impeller. This 
tendency differs somewhat from that of a radial-flow pump 
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[1], in which the pressure changes mainly in the radial 
direction. Due to this pressure change the bubbles receive a 
pressure force toward the pressure side of the impeller blades, 
and the bubble trajectories are seen to be shifted to that side, 
the direction of this shift being opposite to that in the axial-
flow pumps. 

When the bubbles start from the points S6 and S7 in Fig. 8, 
they move toward the negative side of the passage in the latter 
half of the impeller, where a thick concentration of bubbles is 
seen. 

In the region where a negative pressure gradient prevails, 
the bubbles move faster than water, and in the region in which 
an adverse pressure gradient is dominant they move slower. 
The equivelocity curves, V„/W= const, are shown by broken 
lines in Fig. 7. Near the points where the values of V„/W 
change from Vw/W > 1 to, V„/W < 1, the bubbles gather 
closely and the chances for collision and unification of 
bubbles are increased. The shaded regions in the figure 
correspond to such regions when the amount of the admitted 
air is 2 percent. In a radial-flow pump, however, such regions 
are limited only to a narrow space near the impeller inlet. The 
effective area of the flow passage is throttled there and an 
increase in hydraulic loss is brought about, which constitutes 
the greater part of the pump performance degradation in an 
air-admitting condition [5]. 

Diameter and Reynolds Number of Air Bubbles. An air 
bubble in an impeller changes its diameter d according to the 
pressure in the flow field. When a bubble having an initial 
diameter of d0 = 0.5 mm flows through the impeller, the 

-40 -20 0 20 40 60 
Z mm 

Fig. 12 Axial changes in magnitude of forces acting on a bubble 

diameter d changes as is shown in Fig. 9. The curves of the 
change in d/d0 differ considerably when different initial 
bubble positions are selected, but the rate of the change is not 
so large. In Fig. 9 the results for different initial diameters are 
also plotted, when the bubbles start from the point SI. No 
noticeable difference can be seen in them. 

In the course of flow in the impeller, the Reynolds number 
of the bubbles (Re) changes, as shown in Fig. 10. The results 
for different sizes of bubbles are plotted by solid lines, when 
the bubbles are released from the point SI. In the upstream 
region of the impeller, z < 0, and in the front half region of 
the impeller 0<z<20 mm, Re has a nearly constant value for 
each bubble, but in the downstream region it decreases 
gradually. In the same figure, the results for different starting 
positions for d0 = 0.5 mm are also plotted. In the path of a 
bubble flowing near the suction side of the impeller blades, a 
rise of Re is seen to occur. 

Effect of Bubble Diameters. The results for bubbles having 
different initial diameters (d0) are shown in Fig. 11. As d0 
increases, the paths of the bubbles are shifted toward the 
suction side of the impeller blades and the shift becomes 
significant when the bubbles move near the negative side. This 
shift of the path is lessened as d0 decreases and a small bubble 
having a diameter of d0 =0 .1 mm is considered to move 
essentially along on the water streamlines. 

The flow velocity of a bubble changes with its size d0, and 
the moving distances of different size bubbles for equal time 
intervals of 0.005 seconds are also plotted in Fig. 11. The time 
required for the bubbles to pass through the impeller passage 
is almost the same irrespective of the initial diameter d0. In 
the radial-flow pump [1], however, the required time increases 
with d0. This difference is attributable to the difference in the 
pressure gradient in both impellers. 

The magnitudes of forces which act on a bubble flowing 
through the central zone of the impeller (SI) are plotted 
against the axial distance z in Fig. 12, where the forces are 
made dimensionless by use of the centrifugal force Mrw2. The 
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Fig. 14 Trajectories of air bubbles in various water capacities 

buoyancy force due to the difference in fluid density Fy, and 
inertia force together with Basset force ¥B are found to be 
negligibly small, and their graphic expressions are omitted. 
The drag I F d I/A/ho2 by the surrounding water and the 
resistance force due to the pressure gradient I Fp I /Mm2 have 
nearly the same value and they change in a similar trend. The 
accelerating drag \¥v\/Mrw2 decreases with a decrease in 
bubble diameter, and becomes substantially zero when 
d0 =0.1 mm. The same force relationships hold in the radial-
flow pump. If bubbles are released from the respective points 
SI, S5, and S8, the forces IFp l/Mrco2 and \Vd\/Mru2 in the 
impeller vary as shown in Fig. 13. The two forces change 
similarly and with the same magnitude. The magnitude in
creases as the trajectories approach the suction side of the 
impeller. 

Effect of the Water Flow Rate. If the water flow rate of the 
pump is altered, the meridian streamlines in the pump im
peller will also change. But the bubble trajectories in a 
meridian section will always accord well with the streamlines 
of water as described before. Figure 14 exhibits the effect of 
the water flow rate </> on the bubble motion, when the bubbles 
with the initial bubble diameter of d0 =0.5 mm are released 
from the sections of S2, S6, and S10, respectively. As 4> in
creases, the angle with which the water leaves the impeller is 
also increased. Correspondingly, the inclination Of the water 
streamlines against the circumferential direction is raised, and 
the streamlines shift toward the low pressure side (see Fig. 14). 

<£ » 0.290 
4> - 0.260 
<£ =0,230 
<p - o.200 '(Normal) Stream line of water 

Fig. 15 Isobaric lines in the different water capacities 

The bubble trajectories show similar changes. The locations 
of the bubbles after each elapsed time of 0.005 seconds are 
denoted by the marks, a , o , A , and • in Fig. 14. The lines 
connecting the marked points are the path lines of the bub
bles. In view of these results, it may be concluded that the 
flow speed of the bubbles changes to a great degree in ac
cordance with the water flow rate <£. 

As is seen in Fig. 7, the bubbles begin to accumulate in the 
downstream region from the line expressed by V„/W=l, 
which starts from the middle part of the suction side of the 
blade. The line V^lW—X changes in accordance with the 
water capacity as is shown in Fig. 15, and approaches the 
leading edge of the blade as <t> is reduced. In the figure, the 
isobaric lines, AH, = const, are also plotted for different 
capacities. When </> decreases, a low pressure region, A//,- < 
- 1 , approaches to the leading edge, and each iso-baric line 
lies close together in the suction side of the blade in the latter 
half of the impeller passage. In this downstream region the 
adverse pressure gradient is intensified and an accumulation 
of the bubbles will be promoted. When 4> is increased over a 
certain critical value, a closed region near the impeller blade, 
expressed by AH, < - 1 , extends greatly, and the chance of the 
bubble accumulation in the impeller passage is greatly in
creased. From the above results it may be concluded that the 
least accumulation of air bubbles is expected in the impeller at 
a near-normal flow rate. The facts explained in Figs. 9 to 13 
prove to hold for other water capacities. 

Conclusions 

Bubble motion in an axial-flow pump with a high-specific-
speed was observed and the results were analyzed numerically. 
The following are the essentials of this study: 

(1) Tracing of the air bubbles discharged from a small tube 
in front of the impeller provides an adequate means for in
vestigation of the flow in a pump impeller working for a gas-
liquid fluid. 

(2) Air bubbles in an axial-flow pump move essentially on 
meridian streamlines. However, in the downstream region a 
small deviation is observed of the bubble trajectory from the 
liquid streamline. This deviation occurs in the direction from 
the pressure side of the blade towards the suction side. The 
amount of the deviation decreases as the bubble diameter 
reduces and a bubble of d0 = 0.1 mm follows substantially the 
same path with the streamline of water. 

(3) A bubble motion in an impeller is governed sub
stantially by two forces: the drag due to the surrounding water 
and the force due to the pressure gradient in the impeller. The 
bubbles moving near the suction side of the blades experience 
greater forces and have larger flow velocities than those 
moving along the pressure side. 

(4) On the suction side of blades there exists a region in 
which the pressure gradient changes its sign. In this vicinity 
the accumulation of air bubbles is promoted. The degree of 
this accumulation depends on the water capacity, and reduces 
to a minimum at a certain capacity near the normal. 
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The authors are to be complimented for their carefully 
conducted test effort and the presented evaluation of the test 
results. The information is valuable in the analysis of 
cavitating flows as well as flow of liquids with entrained 
gases. 

Selection of approximately the mean radius for the 

Rockwell International, Canoga Park, Calif. 91304. 

presented experimental results would be expected to provide 
the closest agreement with potential flow analytical 
procedures such as presented in references [3 and 4] of the 
paper. Comments on any of the authors experiences with the 
flow in regions of the impeller near the hub and the tip would 
be appreciated. Particularly of interest is the influence of 
deviation from potential flow in the region of the hub and tip 
in addition to the influence of the tip clearance flows men
tioned by the authors. 

The uncertainty of relative flow measurement of ± 5.5 
degrees appears substantially greater than desirable. 
Measurements with a laser velocimeter could substantially 
reduce the uncertainty. 

Author's Closure 

This paper is an experimental confirmation of the 
calculated results of bubble motion in an impeller of an axial 
flow pump by the numerical method published in our 
previous paper. Mr. Furst refers to the effects of the 
secondary flows prevailing in the regions near the hub and the 
tip. The flows in these regions will be affected considerably by 
the secondary flow which does not obey the potential flow 
rule. 

In the experiment, however, measurement of the secondary 
flow was not performed, but it may be assumed that its effects 
on the air bubble motion in the impeller channel are con
sidered to be small, because the secondary flow velocity is 
generally much smaller than the through flow velocity within 
the region in which the bubbles move. In order to clarify the 
detailed effects of the secondary flow on the bubble motion a 
more precise method of flow measurement, for example, that 
by use of a laser velocity meter will be needed and also a three 
dimentional flow analysis may be required. 

Further researches on these subjects will be indispensable. 
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The Effect of Free-Stream 
Turbulence on Turbulent Boundary 
Layers 
Mean flow measurements, and some turbulence measurements, have been made in a 
two-dimensional incompressible constant-pressure ("flat plate") turbulent 
boundary layer beneath a nearly homogeneous nearly-isotropic (grid-generated) 
turbulent free stream. An appreciably nonlinear dependence of the skin-friction 
coefficient and other boundary layer parameters on rms free-stream turbulence 
intensity has been confirmed. A much wider range of free-stream length scales has 
been studied than in previous work, and the results (which agree well with previous 
data where they overlap) clearly indicate the large effect of free-stream length scale 
on the response of the boundary layer. The decrease of free-stream turbulence effect 
with increasing length scale is at least partly attributable to simple reduction of 
normal-component velocity fluctuations by the solid surface; this would not be the 
case in free shear layers. 

1 Introduction 

Except in external aerospace or marine flows, turbulent 
boundary layers or other shear layers generated in engineering 
generally lie beneath a significantly turbulent stream. A good 
example is the flow in a multistage axial turbomachine, in 
which the distubances felt by the blades of one of the later 
rows include (1) "ordered"-i.e., periodic - unsteadiness due 
to the rotating wakes of upstream stages, (2) periodic strong 
bursts of turbulence due to the wakes of the blades in the 
preceding few rows, (3) circumferentially homogeneous 
turbulence generated by the blade rows far upstream. In wind 
tunnel tests, possible disturbances include (1) large scale 
"unsteadiness," effectively-longitudinal pulsations of the 
tunnel flow, (2) genuine turbulence from corner vanes and 
other tunnel circuit components. 

Most published work relates to the idealized nearly-
homogeneous nearly-isotropic turbulence produced by a grid, 
and has mainly been restricted to boundary layers without 
pressure gradient. However, even in this simplest case basic 
uncertainties about the response exist. It has only recently 
been realized [1, 2] that the variation of skin-friction coef
ficient with free-stream, root-mean-square intensity is not 
even approximately linear, as assumed in most previous 
experiments. Also, the response to variations in the ratio of 
free-stream turbulence length scale to boundary layer 
thickness has been seriously underestimated in the past. The 
range of this ratio obtainable at a given value of the intensity 
is rather small unless special efforts are made (see Section 4), 
because the length-scale ratio and the intensity decrease 
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together as x increases, and because the range of parameters 
easily available in conventional low-speed wind tunnels is 
limited. Previous work will not be reviewed in detail in the 
present paper, but results from the more reliable experiments 
will be presented for comparison with our own; a general 
review is given by Hancock [3]. 

The work presented in the paper formed a preliminary part 
of a longer study of turbulence structure, to be reported 
separately, in which the plate carrying the boundary layer was 
slightly heated so that boundary-layer turbulence and free-
stream turbulence could be distinguished, using a fast-
response resistance thermometer ("cold wire") to provide the 
conditioning function in conditional-sampling measurements. 
Results and preliminary discussion are given by Hancock [3]. 
During the early stages of the work, it was noticed that the 
ranges of intensity and length-scale ratio covered in previous 
experiments were quite well fitted by a single line in the in
tensity/length-scale plane (Fig. 1). The reasons are explained 
in Section 4. A prime object of the work reported here was, 
therefore, to cover a larger area in the intensity/length-scale 
plane. The response of the skin friction coefficient Cj will be 
used as a token of the response of the boundary layer in 
general, and a few mean-velocity profiles will be presented to 
show that the more sophisticated kinds of "log law plus 
wake" velocity profile family are still capable of representing 
velocity profiles, except perhaps at the highest free-stream 
intensities, so that cy at given Reynolds number is indeed 
uniquely related to profile shape parameter. Turbulence 
measurements were taken at each test position, but only 
sample results are presented here: for details see [3], 

2 Apparatus and Techniques 

2.1 Configuration. The measurements were made in the 
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Symbol 
X 

V 

o 
A 

• 

Ref. 
2 
10 
11 
12 
13 

uee/v 
2770-4190 
1690-3300 
3780 - 5260 
1800-4600 
400-2000 

0-01 002 003 004 005 0O6 0-07 008 009 
(u'/u)e ' 

Fig. 1(a) Previous workers' parameters: range of momentum 
thickness Reynolds number, UBe/v, shown 

001 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 
(u ' /U)e 

Fig. 1(b) Present measurements: Ug0/v>2000. A, B, C, D, and E 
identify profile sets: points in each set correspond to different 
measuring stations along plate. 

Fig. 1 Free-stream turbulence intensities and length-scale ratios used 
in experiments 

Department's 0.91 x 0.91 m (3 ft x 3 ft) wind tunnel, at a 
speed of about 16.5 ms~' (55 ft/s: unit Reynolds number 
1080 per mm). Boundary layer measurements were made on a 
flat plate, 15 mm thick and 2.4 m long, supported horizon
tally midway between the working section floor and ceiling, 
with its leading edge set at several positions between 0.3 and 
2.06 m from the working section entrance, where the tur
bulence grids were installed: the working section length was 
4.9 m. The leading edge of the plate was ogive-shaped, 75 mm 
long with an included angle of 50 deg at the leading edge. This 
shape was chosen to reduce fluctuating separations at all 
likely instantaneous angles of incidence, but at the same time 
maintain a sharp leading edge. Limited flow-visualization 
tests showed no observable separation. Transition trip wires 
of diameter 0.8 mm were attached to the upper and lower 
surfaces at the end of the leading-edge section. Some of the 
tests reported here (see Table 1) were done with heating wires 
mounted just downstream of the trip, which thickened the 

boundary layer slightly. At the downstream end of the plate a 
symmetrically-tapered trailing edge unit (90 mm long) was 
fitted. Ten 89 mm dia. removable instrumentation disks were 
mounted along the centre line of the plate, flush with the 
upper (measuring) surface. 

2.2 Turbulence Grids. Nearly all the measurements were 
made with square-mesh square-bar biplane grids, the results 
reported here being for grids with 76.2 mm mesh, 12.5 mm 
bar width and 152 mm mesh, 38.1 mm bar width. Biplane 
grids made of 2:1 rectangular bars with their larger dimension 
normal to the stream, and "monoplane grids," with 
horizontal and vertical bars in the same plane, were found to 
produce nonuniform unsteady flow, possibly because of the 
larger size of the separated region behind each intersection, 
and are not recommended for generating free-stream tur
bulence. Similar phenomena were observed by Cherry [4] in 
another of the Department's wind tunnels. Grids comprising a 
single row of parallel (square) bars were found to exhibit 
peculiar behaviour of the u-component spectra at low wave 
numbers. The straight line approximations to the measured 
decay of longitudinal-component intensity are, for the 76 mm 
grid, __ 

[u2/U2]-°-s = 11.43 (A7M-4.81) (1) 

and for the 152 mm grid 

= 8.39(A7M-3.65) (2) 

the open-area ratios being 0.70 and 0.56, respectively. As 
usual for good-quality grid-generated turbulence the root-
mean-square intensities of the lateral components were 
smaller, by roughly 5 percent, than the longitudinal com
ponent intensity. 

For ease of comparison with other experiments in which 
only the w-component intensity was, or will be, measured, the 
length scale used in the presentation of our results is a form of 
dissipation length parameter, defined by the equation 

d(u*)e - G?)\n 

ur dX I " 

where, / / the turbulence were isotropic, the left-hand side 
would be two-thirds of the rate of turbulent energy 
dissipation. L" can easily be deduced from the decay for
mulae, equations (1) and (2). 

2.3 Test Conditions and Measurement Techniques. The 
maximum intensity allowed at the plate leading edge was 15 
percent rms w-component, and the maximum intensity at any 
measurement station was 6 percent, the lowest being 1.8 
percent. The lowest momentum-thickness Reynolds number 
at a measurement station was 1600: it is well known (see e.g., 
[5]) that the velocity-defect profile depends directly on 
Reynolds number at Reynolds numbers below about 5000, the 
effects being really significant only below about 2000. All our 
skin-friction increments and similar results are referred to the 

Nomenclature 

H 

M 

U 
u,v,w 

TW/(VipUe
2), skin-friction 

coefficient 
8*/Q, shape parameter 
length scale of free-stream 
turbulence, defined in 
equation (3) 
mesh width of turbulence-
generating grid 
mean velocity in x direction 
velocity fluctuation in x,y, 
and z direction 
(u2)1/2 

"r = (TW/P)[/2, friction velocity 
VE = entrainment velocity 
X = distance from grid 
x = distance from plate leading 

edge 
y,z = normal and spanwise 

coordinates 
Acf,AH = change in cf, H from 

boundary layer in low-
turbulence stream (no grid) 
at same Ued/v 

8*' = displacement thickness 

5QQ, = 5 

P = 

Suffixes 
e 

LE 
0 

distance from surface at 
which U/Ue =0.995 
momentum thickness 
kinematic viscosity 
density 
surface shear stress 

external-stream conditions 
leading edge 
no-grid conditions at same 
U.d/v 
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Table 1 Details of profile sets (see Fig. 1(b)) 

Set A (76 mm grid, distance from grid to leading edge XLE = 2.06m) 

x,m 
0.61 
1.22 
0.82 
2.43 

u'/Ue 

.0262 

.0224 

.0197 

.0181 

Le/8 
3.51 
2.31 
1.75 
1.48 

6, mm 
14.8 
24.7 
35.2 
43.8 

<?,mm 
1.54 
2.57 
3.48 
4.34 

cf 
.00384 
.00340 
.00320 
.00308 

H 
1.418 
1.382 
1.361 
1.342 

Set B (152 mm grid, XLB = 2.06m) 

x,m 
0.61 
1.22 
1.82 
2.43 

u'/Ue 
.0514 
.0442 
.0387 
.0345 

Le/8 
4.94 
3.28 
2.53 
2.15 

S,mm 
19.1 
31.5 
44.3 
55.9 

6,mm 
1.63 
2.62 
3.62 
4.30 

cf 
.00403 
.00360 
.00340 
.00330 

H 
1.366 
1.334 
1.307 
1.291 

Set C (152 mm grid, XLE = 2.06m, heater wires near LE) 

x,m 
0.91 
1.22 
1.52 
1.82 
2.10 

u'/Ue 

.0468 

.0442 

.0410 

.0387 

.0362 

Lelb 
2.72 
2.23 
1.90 
1.70 
1.69 

5, mm 
36.7 
46.4 
56.8 
65.7 
68.9 

9,mra 
2.88 
3.54 
4.09 
4.57 
4.88 

cf 
.00364 
.00352 
.00339 
.00334 
.00326 

H 
1.310 
1.286 
1.286 
1.278 
1.276 

( ^ ) e x 100/(^6- + 2 0 ) 
°995 

Fig. 2(a) Present measurements: parameter range and symbols as in 
Fig. 1(b) 

Set D (76 mm grid, XLE = 0.3 m) 

x,m 
0.61 
1.22 
1.82 
2.43 

u'/Ue 

.0597 

.0399 

.0307 

.0255 

Le/S 
1.16 
1.03 
0.93 
0.90 

<5,mm 
27.4 
39.2 
50.9 
58.9 

0,mm 
1.68 
2.72 
3.66 
4.54 

cf 
.00434 
.00377 
.00347 
.00323 

H 
1.300 
1.291 
1.285 
1.291 

ACf 
C f o 

0-2 

Set E (76 mm grid, XLE = 0.3 m, heater wires near LE) 

x,m 
0.91 
1.22 
2.43 

u'/Ue 

.0482 

.0399 

.0255 

Le/8 
0.77 
0.71 
0.67 

5, mm 
46.7 
56.9 
78.4 

0,mm 
2.95 
3.48 
5.23 

cf 
.00388 
.00368 
.00325 

H 
1.260 
1.260 
1.264 

boundary layer below a turbulence-free stream at the same 
momentum-thickness Reynolds number. 

2.4 Techniques and Accuracy Estimate. Skin-friction 
values were obtained from pitot velocity profile 
measurements in the logarithmic region, assuming that the 
constants in the "log" law are not disturbed by free-stream 
turbulence. The justification of this assumption is that the log 
law is extraordinarily insensitive to the variation of turbulence 
intensity in the outer part of ordinary turbulent boundary 
layers in various pressure gradients: direct evidence for its 
applicability is provided by the goodness of fit of the present 
profiles to the slope of the universal logarithmic law. Preston 
tube measurements of skin friction, which assume the 
logarithmic law is unaffected, were also made for several 
cases, using the calibration of Patel [6], and these agreed with 
the values from the velocity profiles. 

Two-dimensionality of the flow was assessed from Preston-
tube measurements off the plate center line, which showed 
spanwise variations of no more than ±2 percent, and by 
deducing skin friction (on the central line) from the two-
dimensional momentum integral equation. Of the 22 values, 
of Cf so deduced, 15 were within ±10 percent deviation from 
Preston-tube values-the bound considered by Coles [7] as 
classifying "normal" boundary layers-and all but one 
within ±20 percent. 

Accuracy of the measured changes in Cy due to free-stream 
turbulence, the key result of the present paper, is controlled 
by the repeatability rather than the absolute accuracy, of 
measurements of cy, which was found to be generally ±1 
percent at 20:1 odds (see Fig. 2(a)). 

(^~) *.mo {±2. 
u e lb' 995 

Fig. 2(b) Present and previous measurements: , fit to data of Fig. 
2(a); symbols for other workers' data as in Fig. 1(a) Hatching as on 
dry present analysis of Charnay [12]. For data of Blair see [8]. 

Fig. 2 "Correlation of fractional change in skin-friction coefficient as a 
function of free-stream intensity and length scale: clo is value in low-
turbulence stream at same U„0lv 

3 Results 
Figure 1 shows the area in the intensity/length-scale plane 

covered by previous workers (Fig. 1(a)), and by the present 
work (Fig. 1(b)). In the latter figure the curves are the 
trajectories of individual runs (i.e., sets of measurements at 
different positions downstream of the leading edge of the 
plate, for a fixed position of the plate downstream of a given 
grid). The reasons for the highly restricted coverage of 
previous work are discussed in Section 4. Details of test 
conditions are given in Table 1. 

Figure 2 shows the response of the skin friction coefficient 
Cf at given ueB/v, to the imposition of free-stream turbulence. 
The abscissa is a purely empirical parameter chosen by trial 
and error to collapse present and previous data as well as 
possible: individual variables are tabulated in Table 1. Figure 
3 shows the one-to-one correspondence between changes in cf, 
at given ued/v, and changes in the profile shape parameter H: 
as will appear below, the alternative shape parameter, the 
"wake strength" II, is difficult to define in flows with high 
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Fig. 3 Correlation between fractional increase in shape parameter 
H = &*I0 and cf: present data; symbols as in Fig. 1(b) 

A C f / c f o 

Fig. 4 Correlation between fractional increase in shape parameter 
6995W and ct: symbols as in Fig. 1(6) 

free-stream turbulence, except in relation to a given empirical 
velocity profile "family." Figure 4 shows the somewhat less 
close correlation between the change in boundary layer 
thickness 6995, at given 0, and the change in cf. As the sample 
velocity profiles in Fig. 5 show, the velocity approaches the 
free-stream value very slowly if the free-stream turbulence 
intensity is high. 

Detailed turbulence measurements will be presented in a 
separate paper, and are given by Hancock [3]. Figure 6 shows 
normal-component mean-square intensity profiles, 
corresponding to the first and last mean-velocity profiles of 
the group of 6 shown in Fig. 5. The measurements were made 
with x-array hot wire probes, and the u-component mean-
square values are seen to agree well with check measurements 
made with a single-wire probe responding to u only. Figure 7 
shows shear-stress profiles for the same conditions as Fig. 6. 
As expected, the shear stress tends to zero outside the 
boundary layer while the three mean-square intensities 
become nearly equal. The x z-plane shear stress, -puw, is 
nearly zero everywhere as it should be in two-dimensional 
flow. 

4 Discussion 

The region of the intensity/length-scale plane covered by 
previous reliable data is shown in Fig. 1(a), and the individual 
measurement points would be regarded, by an uninformed 
observer, as a tolerably good approximation to a single 
straight line! Obviously, the length scale Le of the free-stream 
turbulence cannot be larger than a typical transverse 

u t y / v 

Fig. 5 Mean velocity profiles on "logarithmic law" plot. Top two 
profiles, low-turbulence stream: bottom six profiles 152 mm grid, plate 
leading edge 2.06 m from grid, profile set C in Fig. 1(b), x increasing 
upwards. Solid lines, equations (4) and (5). Ordinate scale refers to 
lowest profile. 

dimension of the working section. Consequently if the 
measurements are to avoid low-Reynolds-number effects 
there must be an upper limit to the value of Le/6 obtainable in 
a given facility, varying inversely as the lower limit set on the 
Reynolds number Ueb/v. Small values of Le/S can be ob
tained only at low intensities (i.e., far downstream where 5 is 
large). Finally, the maximum permissible intensity is limited, 
almost independently of length scale, by the need to avoid 
excessive intensities at the plate leading edge, coupled with the 
need for a sufficient development length to avoid low-
Reynolds-number effects. The effect of these various 
restrictions on the coverage of the present results is seen in 
Fig. 1(b), but, once the problems were realized, it was at least 
possible to cover a larger range than previous experiments. 
Our failure to reach the large intensities attained by Robert
son and Holt [13] is explained by the lower limit we set on the 
momentum-thickness Reynolds number (their high-intensity 
results having being obtained at a momentum-thickness 
Reynolds number of only 400). The topic is discussed further 
in [3]. 

The simplest measure of free-stream turbulence effects is 
the response of the skin-friction coefficient cf shown in Fig. 
2(a); the abscissa is purely empirical and a more complicated 
parameter would probably be required to cover a larger range 
of length-scale ratio and intensity, even for closely isotropic 
free-stream turbulence. There are not enough data points at 
small intensity to verify that the correlation is applicable to 
naturally-occurring wind-tunnel turbulence. Meier and 
Kreplin [2] found a decrease in cf with increasing Le as im
plied by our correlation, but considered it to be within the 
likely experimental error. The nonlinearity of the curve in Fig. 
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Mean-square turbulence intensity profiles for same conditions 

2(a) is unmistakable, and borne out by previous results [2, 8, 
10-13] as shown in Fig. 2(b). Meier and Kreplin [2] have 
clearly demonstrated that the variation of cy with u' at small 
intensities is very much less rapid than at large intensities and 
it seems virtually certain that the response varies as the mean 
square rather than the rms intensity at small intensities, 
consistent with simple "superposition" arguments. The 
consensus of the other data suggests that the increase in skin-
friction coefficient has a limiting value of little more than 0.2, 
but the present results suggest a stronger upward trend. The 
idea that further increase in cy will be slow once the "wake" 
component of the velocity profile has been reduced to zero is 
probably a little too simplistic, although the postulated im
perturbability of the logarithmic law does imply a lower limit 
onUe/uT=*J(2/cf). 

The decrease of free-stream turbulence effect variation with 
increasing length scale implied by Fig. 2(a) is to be expected, 
because of the effect of the wall in reducing the normal-
component intensity, which is the component most likely to 
affect the boundary layer, below the free-stream value. The 
attenuation is a function of y/Le, becoming insignificant for 
y/L"e^\3 [9]. Being an effectively inviscid constraint it is 
not likely to depend on the properties of the boundary layer. 
(In the present work the free stream was defined as the region 
in which the mean velocity and the three turbulence intensities 
were independent of distance from the wall.) Values of 
L"c/5995 larger than ours are likely to be of practical im
portance, but very small values are not, because unsheared 
turbulence with small scales decays rapidly as implied by 
equation (3). It is probable that cf/cfo decreases again at small 

10*(-Dv) 

0-5 1.0 
V 6 995 

o o o o o 

Fig. 7(a) x = 0.912 m, (u 'IU)e = 0.0468, L e «gg5 = 2.72 

1CT(^uv) 

10 

Jo-o-o-o-g-b-
O &5 . 1-0 1-5 19 

y/S995 

Fig. 7(b) x = 2.432 m, (u' IU)B = 0.0345, LU
B /«9 9 5 = 1.55 

Fig. 7 Shear-stress profiles for same conditions as Fig. 5. Circles 
show - uwlUa

2 to same scale 

length scales, because if the free-stream eddies are much 
smaller than the boundary layer eddies^ "superposition" 
arguments, implying variation of Acy with u2 rather than -
roughly - JJu2), are likely to apply again. 

The Reynolds-number range of the data shown in Fig. 1(6) 
is 1600 <Uee/v< 5000 for the open symbols and 
1600<Ue6/v<6000 for the closed symbols. In the case of 
profile sets D and E, Cf/Cf0 decreases with increasing distance 
from the leading edge and hence CjlCj0 decreases with in
creasing Reynolds number, whereas for profile sets A, B and 
C, CflCf0 increases over the same distance and hence cy/c/0 for 
these cases increases with Reynolds number. The success of a 
single correlation curve based upon intensity and length-scale 
ratio alone in correlating these different cases suggests that 
there is no significant Reynolds-number effect on the present 
data. Blair [8] shows that his data are well fitted by the present 
curve using a modified parameter (u'/U)e/ (L"l 
899S+2)j3, where fi = (3e - Re«/40° + 1) is an additional empirical 
parameter to account for low Reynolds number effects. At 
Ued/v=l600, /3=1.055 which for Acy/c/o=0.2 is about 
equivalent to the estimated likely error in cy of 1 percent. The 
single discrepant point in Fig. 2 differs from the trend more 
than this and would appear to be inaccurate. 

Evidently, the relationship between Acy/cy„ and AH/H0 in 
Fig. 3 is well fitted by a single curve, there being no evident 
trend with intensity length scale or Reynolds number. (Ac
tually it is the behaviour of the Clauser shape parameter 
G = (l - l/H)V(2/cy), rather than H, which is expected to be 
independent of Reynolds number, except at low Reynolds 
number). Figure 5 shows some sample velocity profiles, the 
solid lines being given by the logarithmic law and wake law, 

U 1 , ury 1 
- = - l n ^ - + c + - . g 
u, K v K K) (4) 
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with A"=0.41, c = 5.2, the "wake" component g being given 
by 

g(n, |)=(i + 6n)o/5)2-(i+4n)o/6)3 (5) 

This [14] is the simplest polynomial satisfying the boundary 
conditions, including the requirement that the slope of the 
velocity profile shall be zero at the outer edge of the boundary 
layer: the "cosine" formula frequently used for the wake does 
not satisfy the requirement, and is also unrealistic if II is 
negative. II and S were evaluated in the usual way from Ue/uT 
and 5*. Equation (5) provides a reasonable fit to the velocity 
profiles, except where Acf/c/0 is large, that is where 5/6 is 
much larger and the "tail" of the velocity profile much longer 
than usual (Fig. 4). In any case, the velocity profile is a 
function of ue'/uT, Le/5, andy/8 and so any wake function of 
the form g(II, y/S) is unlikely to be always adequate. The 
approximate similarity of the profiles in Fig. 5. is fortuitous 
because ue'/uT and Le/5995 are by no means constant, and is 
due to the opposite effects of decreases in both intensity and 
length-scale ratio. 

Figure 6 presents sample measurements of the three 
components of turbulence intensity for the first and last of the 
velocity profiles shown in Fig. 5. The decrease of the normal-
component intensity below the free-stream value, as a result 
of the "inviscid" constraint applied to the solid surface, is 
particularly noticeable in Fig. 6(a) and it is seen that the in
tensities do not reach their free-stream values until y=^ 1.3 L". 
Figure 7 shows the corresponding shear-stress profiles (ab
solute values being apparently slightly too low) which show 
that the shear stress reaches zero well before the wall-
constrained intensities reach their free-stream values, 
although the shear-stress profile at the smaller L/8 has a long 
"tail" corresponding to that in the velocity profile. No ad
justment was applied to - uv to force it to zero in the free 
stream, although care was required in measuring the wire 
angles and probe alignment: for u'e = ur a probe pitch error of 
1 deg gives an error in - uv of —0.035 u2

r. Some previous 
measurements [11] showed large shear stress at the edge of the 
mean velocity profile and well beyond, but must be regarded 
as doubtful. The shear stress at y = 899S, calculated from the 
entrainment rate VE=d/dx (C/c(6995 —5*)) and the ap
proximation - uv(y = 6995) = VEUe{\ -0.995) compares 
well with the present hot-wire measurements as shown in Fig. 
7. 

4 Conclusions 

The present results show that the strong nonlinear 
dependence of free-stream turbulence effects upon free-
stream intensity, previously observed at low intensities by 
Meier [2], in fact occurs at all intensities. The results also 

show, apparently for the first time, that the free-stream length 
scale is also an important parameter. A purely empirical 
combination of intensity and length scale was found by trial 
and error to give a single-curve correlation for the skin-
friction increase, as shown in Fig. 2. There is no reason to 
suppose the correlation will prove adequate over a much 
larger range of intensity and length-scale ratio than that from 
which it was deduced (Fig. 1(b)). In particular, the correlation 
is likely to break down at smaller values of Le/8995 where 
intuition suggests that the extra mixing due to free-stream 
turbulence will decrease. The variation of other integral 
parameters can be correlated linearly with the variation in cf, 
and the velocity profiles can be fitted tolerably well, except 
when Acy/c/o is large, by the standard logarithmic law of the 
wall and cubic "wake" function. Intensity profiles clearly 
show that the "inviscid" constraint of the solid surface on the 
free-stream turbulence can be felt well outside the boundary 
layer, extending to a distance from the surface equal to about 
1.3 times the length scale (L") of the free-stream turbulence. 
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Laminar Flow in the Entrance 
Region of Elliptical Ducts 
A closed-form analytical solution is developed to hitherto unsolved problem of 
steady laminar flow of a Newtonian fluid in the entrance region of elliptical ducts. 
The analysis is based on the Karman-Pohlhausen integral method and entails 
solution of the integrated forms of the mass and the momentum balance equations. 
According to this analysis, the hydrodynamic entrance length based on 99 percent 
approach to the fully developed flow is equal to 0.5132\/(1 + \2) where X is the 
aspect ratio. Also, the fully developed incremental pressure defect is found to be 
7/6 which is independent of the aspect ratio. In the limit when the flow becomes 
fully developed, the solution converges to the known exact asymptotic solution. 
Available, wide-ranging velocity measurements for a circular tube agree with the 
analytical predictions within 7 percent. Also, available pressure drop measurements 
near the inlet of a circular tube agree with the analytical predictions within 2 per
cent. 

Introduction 

A survey of the literature on laminar duct flows revealed 
that the problem of flow development in elliptical ducts has 
not been solved [1]. Only two aspects of the problem have 
received some attention. Lundgren, et al. [2] predicted the 
fully developed incremental pressure defect for elliptical ducts 
without solving for the velocity development. Subsequently, 
McComas [3] extended the analysis of Lundgren, et al. [2] to 
predict the hydrodynamic entrance lengths for elliptical ducts. 
The problem of flow development in the limiting case of a 
circular tube, on the other hand, has been attacked by a 
number of investigators by a variety of methods. These 
solutions have been well reviewed and categorized by Shah 
and London [1]. In the present paper a compact and closed-
form analytical solution is presented to the problem of flow 
development in elliptical ducts. The solution is based on the 
Karman-Pohlhausen integral method. The predictions of the 
present analysis are in remarkably close agreement with the 
available velocity [4,5,6] and pressure drop [7] measurements 
for the limiting case of a circular tube. 

Analysis 

The physical system under investigation is sketched in Fig. 1 
which shows that the flow field is idealized as consisting of a 
viscous boundary layer along the duct wall and an essentially 
inviscid fluid core around the duct axis. At the duct inlet the 
flow velocity vv0 is uniform. The outer boundary of the 
viscous region is the duct wall represented by the ellipse 
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Applied Mechanics, Bioengineering, and Fluids Engineering Conference, 
Houston, Texas, June 20-22, 1983 of THE AMERICAN SOCIETY OF MECHANICAL 
ENGINEERS. Manuscript received by the Fluids Engineering Division, June 11, 
1982. Paper No. 83-FE-l. 

X2 + Y2 = 1. The inner boundary of the viscous region is 
another ellipse represented by X2 + Y2 = P2 where /? is a 
boundary layer parameter varying with the streamwise 
coordinate. The physical significance of |8 together with 
derivation of the equation X1 + Y2 = /32 is provided in the 
Appendix. 

Basic Equations. With the usual boundary layer theory 
simplifications, the steady laminar flow of a Newtonian fluid 
in the hydrodynamic entrance region of an elliptical duct can 
be described by the axial momentum balance equation 

dp (d2w d2w 

•(« 
dw dw dw\ 
T~ +V — + W — ) = • 
dx ay oz' 

dz Ma? + dy2 

and the continuity equation 

du dv dw 

dx ay dz 

(1) 

(2) 

Introducing the dimensionless variables, equations (1) and 
(2) transform to 

„aw aw fkdw 
\U + V + — W 

dX dY Re dZ 

V\ dP 1 
. + 

d2 W d2 W\ 
+ • 

2Re dZ VXRe \ dX2 dY2 

dU dV fkdW_ 
XdX+ d~Y+ Re~dZ " ° 

(3) 

(4) 

Integrating equation (3) across the duct cross section by 
utilizing equation (4), we obtain the integrated form of the 
momentum balance equation 

J ^i-x2 

dZix=o Jy=o 8 dZ 
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Fig. 1 Physical system 

+ 
r1 /dw\ 
Jx=o \~dY/ 

3X/*=V7 
_dY 

r=V7 
dX\ (5) 

In arriving at equation (5), the no-slip condition along the 
duct wall and the symmetry conditions along the duct axes 
have been utilized. Imposition of these conditions causes the 
transverse velocity components U and V to drop out from 
equation (5) without any assumptions regarding their 
magnitudes. This means that in equation (5) attention need be 
confined to the axial velocity W and the axial pressure P 
which are the principal momentum transfer quantities of 
interest. An additional relation is required to determine W 
and P. Such a relation is provided by the integrated form of 
the mass balance equation which can be obtained simply by 
equating the mass flow rate at the duct inlet to that at an 
arbitrary axial location. Thus, 

p 1 p ^\-X 

)x=o J y=o 
WdXdY= (6) 

Axial Velocity Profile. In order to solve the system of 
equations (5) and (6), we shall assume the following velocity 
profile within the boundary layer 

WJl-X2-Y2) 
Wb=-^~ '- (7) 

( l - i ? ) 
where Wc= WC(Z) is the axial velocity in the inviscid core. 
Equation (7) is obtained by a generalization of the following 
velocity profile 

W=Wc(l-X
2-Y2) (8) 

prevailing in the fully developed region. In equation (8), Wc 

denotes the axial velocity along the duct axis. For the fully 
developed flow Wc = 2. When the flow becomes 
hydrodynamically developed (i.e., i? = 0), equation (7) 
becomes identical with equation (8). Likewise at the duct inlet 
where the flow is all inviscid equation (7) becomes identically 
zero. Furthermore, equation (7) shows that at the duct wall 
represented by X2 + Y2 = l, Wb=0. Thus the no-slip con
dition is satisfied. Finally, at the inner boundary of the 
viscous region represented by X2 + Y2 = TJ, equation (7) shows 
that Wb = Wc. Thus equation (7) is satisfied at all the 
boundaries of the flow field and as such constitutes an ap
propriate velocity profile. 

Relationship Between Wc and r\. Equation (7) represents 
the axial velocity Wb within the boundary layer in terms of the 
fluid core velocity Wc and the boundary layer parameter t) 
both of which are functions of the streamwise coordinate Z. 
Before concerning ourselves with the streamwise variation of 
Wc and ?), we will first establish one-to-one correspondence 
between them via the use of the mass balance equation (6). 
Introducing equation (7) into equation (6) and remembering 
that within the boundary layer W= Wb (X, Y,Z) and within 
the fluid core W-WC(Z), we obtain after evaluating the 
appropriate surface integrals. 

WC = 7 T ^ (9) 
(1+17) 

Equation (9) predicts that when 17 = 1, Wc = \ which is the 
correct limit at the duct inlet where the flow is uniform. 
Equation (9) also predicts that when rj = 0, Wc=2 which is 
also the correct limit for the fully developed flow. 

Relationship Between i\ and Z. As a part of the velocity 

N o m e n c l a t u r e 

a = semimajor axis of the duct 
wall 

b = semiminor axis of the duct 
wall 

/ = local friction coefficient 
/ = average friction coef

ficient 
K = dimensionless incremental 

pressure defect 
p = static pressure within the 

duct 
p0 = static pressure at the duct 

inlet 
P = [(Po-p)/VipWo]> dimen

sionless axial pressure Z = 
drop 

Re = (w0^fab/v), Reynolds /3 = 
number 

u,v,w = veloci ty c o m p o n e n t s 
parallel to x,y,z axes, 5 ,̂5 ,̂ = 
respectively 

U,V,W = (u/w0), (.v/w0), (w/w0) 
dimensionless velocity 
components r; = 

vv0 = uniform velocity at the 
duct inlet 

x,y,z = cartesian coordinates X = 
X, Y = (x/a), (y/b), dimen- \x. = 

sionless spanwise coor- v = 
dinates p = 

[(z/V«Z>)/Re], dimension
less streamwise coordinate 
( 1 - 5 , / a ) or (1-dy/b), 
dimensionless boundary 
layer thickness parameter 
boundary layer thickness 
along the semimajor and 
semiminor axis, respec
tively 
01, dimensionless 
boundary layer thickness 
parameter 
(bid), duct aspect ratio 
dynamic viscosity 
(fx/p), kinematic viscosity 
fluid density 
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profile assumption we shall now assume the streamwise 
variation of the boundary layer parameter 17 entering 
equations (7) and (9) in the form 

Z=A(1+Br,2 + Clnv
2} (10) 

where A, B, C are constants to be determined from the ap
propriate boundary conditions. The first of these conditions is 
that at the duct inlet the boundary layer thickness is zero 
which translates to ??=1 at Z = 0. The second boundary 
condition expresses the fact that at the duct inlet the 
streamwise growth of the boundary layer is identical to that 
on a flat plate at zero incidence. From Blasius' solution [8] it 
is known that for a flat plate at zero incidence the boundary 
layer thickness S~Vz whence using the definition of rj it 
follows that at Z = 0, dt)/dZ=-ao, i.e., dZ/dt) = 0. Using 
these two boundary conditions in conjunction with equation 
(10), we obtain B= - 1 and C= 1. The constant A can now be 
determined from the process of matching the axial pressure 
predicted by Bernoulli's equation to that predicted by 
equation (7) at the duct inlet where the flow is inviscid. 
Combining Bernoulli's equation P= W2. - 1 with equation (9), 
we obtain 

1 (11) (1+r,)2 

Next, the pressure drop predicted by equation (7) at the 
duct inlet is governed by 

dP _ AWC (1+X2) 

d~Z~ (1-ij) X 

which is obtained from equation (3) by setting U= V= W=0 
and(d2W/dX2) = (d2W/dY2) = - 4 / ( 1 -rj2) as obtained 
from equations (7) and (9). Combining the foregoing equation 
with equation (10) with B = - 1 and C = 1, we obtain 

dP __ 16A / 1 + X2 \ 
dr) t] V X / 

The solution of this equation subject to the boundary 
condition that at r) = 1, P = 0 is 

(
1 _i_ \ 2 v. 

— — Jim? (12) 

Equating the pressures given by equations (11) and (12), we 
get 

i6(i±^wiim r4- ( lrn 
V X / , - i L(l + „)2lnrjJ 

By the application of PHospital's rule, the limit of the 
quantity on the right-hand side is seen to be - 1 . Thus the 
constant A is found to be equal to f-X/16(l +X2)]. Having 
determined the three constants, equation (10) can finally be 
written as 

1 6 ( ^ ^ ) z = ( r ? 2 - l - 2 1 n ) ? ) (13) 

Equation (13) shows that at »/ = 0, Z = ° ° and (di)/dZ) = 0. 
This means that the flow becomes hydrodynamically 
developed asymptotically at Z=°o. Thus the present analysis 
does not suffer from the drawback of McComas' analysis [3] 
according to which the flow becomes developed abruptly at a 
finite distance from the duct inlet. When the flow becomes 
developed abruptly, the condition (dij/dZ) = 0 is not satisfied. 
The physical meaning of this condition is that once the flow 
becomes fully developed, the streamwise variation of the 
boundary layer thickness ceases due to the fact that the 
viscous boundary layer now spans the entire duct cross sec
tion. 

Hydrodynamic Entrance Length (Z„). The hydrodynamic 
entrance length Z„, is the dimensionless axial distance 

required for the viscous flow to cover the entire duct cross 
section. This happens when rj = 0. As pointed out above, 
equation (13) predicts that »; = 0 at Z=oo. This being the case 
for practical purposes we shall define Z„ as that axial 
distance at which the center line velocity Wc is within 1 
percent of its ultimate fully developed value 2, i.e., Wc = 1.98. 
Introducing Wc = 1.98 into equation (9), we notice that when 
Wc = 1.98, rj = 0.01. Introducing JJ = 0 .01 into equation (13), 
we obtain 

Zx =0.5132 
\ 1 + X2 / 

(14) 

Axial Pressure Drop (P). All the ingredients for the 
determination of the axial pressure drop P from the 
momentum equation are now in hand and we proceed to 
determine it by introducing equations (7) and (9) into equation 
(5). When the indicated surface integrals are evaluated with 
due regard to the limits of applicability of equations (7) and 
(9), we obtain after considerable algebraic manipulation 

dP _ 8 / l + x 2 \ I 6 •n drl 
d~Z~ " m (15) 

(1 - r,2) \ X / 3 (1 + ri)3 dZ 

Determining {dr\ldZ) from equation (13) and introducing it 
into equation (15), we have 

dP _ 8 r3r/3+9?/2+25}? + 3 l / l + X 2 -

dZ ~ d-v2) 3(1 +vY '](^) (16) 

Setting 77 = 0 in equation (16), we get dPldZ= [8(1 +X2)/X] 
which is the correct fully developed limit for dP/dZ. Setting 
t) = \ in equation (16) it is seen that dP/dZ=oo. This simply 
means that at the duct inlet pressure changes very rapidly. 

Next, to determine the axial pressure drop P from equation 
(15), we eliminate Z between equations (13) and (15) and solve 
the resulting differential equation subject to the boundary 
condition that at 17 = 1, P= 0. This leads to 

2 ( l - i j ) ( l+37 / ) -3 ( l + rj)2lnr) 
P=- (17) 

3(1 + v)2 

which is the desired pressure distribution in the entrance 
region of elliptical ducts. Since one-to-one correspondence 
between 17 and Z is established by equation (13), the use of 
equation (17) in conjunction with equation (13) gives the 
required axial variation of P. 

Incremental Pressure Defect (K). In duct flows, it is 
customary to represent the axial pressure drop as a difference 
between the actual pressure and an ideal pressure which is 
considered hydrodynamically developed right from the duct 
inlet. We shall call this pressure difference as the incremental 
pressure defect K. According to the present analysis the actual 
pressure is given by equation (17) and the ideal pressure can be 
determined from dP/dZ= [8(1 + X2)/X] as P=8[( l + X2/X]Z. 
Combining this relation with equation (13), we can express the 
ideal pressure as 

P=Vi(n
2-\-2\n-q) (18) 

Recalling the definition of K in conjunction with equations 
(17) and (18), we have 

(3r7
3+9r7

2+2l7? + 7)(l-T?) 

6(l+77)2 

The fully developed value of K is obtained simply by setting 
ij = 0 in equation (19). Thus, according to the present analysis 
Km = 7/6 which is independent of the duct aspect ratio. 

Friction Coefficients (fj). In engineering applications, it 
is customary to represent the relation between the pressure 
gradient (dpldz) and the mean velocity of flow w0 by in
troducing a friction coefficient / by setting the pressure 
gradient proportional to the dynamic head pw\/2 according 
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to the relation (dp/dz) = -(fpwl)/(2vab). Introducing the 
dimensionless variables this can be written as fRe = (dP/dZ). 
Recalling equation (16), we have 

X \ „ 8(3TJ3 +9J? 2 +25T; + 3 ) 

( I ^ W 3d -r,2)(l +„)' (20) 

When the flow becomes fully developed 77 = 0 and equation 
(20) predicts that [X/(l+X2)l/„Re = 8 which is the correct 
fully developed limit of /Re. In actual practice it is more 
useful to know the average value / o f the friction coefficient. 
By definition 

/Re=iJ>dZ (21) 

Introducing equation (20) into equation (21) and evaluating 
the indicated integral via equation (13), we obtain 

X \ ^ 1 6 r 2 ( l - r ) ) ( 3 + r/)-3(l+7/)2lnr, / x \ . 16 r: 
( T T X O ^ T L (22) 

(l+i?)2(i72-l-21n7?) 

By the repeated application of l'Hospital's rule it can be 
shown that the limiting value of the quantity on the right-
hand side of equation (22) as rj—0 is 8 which means /even
tually converges to the same limit a s / . Equations (20) and (22) 
also show that at the duct inlet, i.e., at i?=l, b o t h / a n d / 
possess infinite values. 

Results and Discussion 

Using the analytical results derived in the preceding section, 
a number of momentum transfer quantities of practical in
terest are computed and presented in this section. Presen
tation of the results is vastly simplified as the duct aspect ratio 
X is effectively absorbed in the streamwise coordinate Z. This 
eliminates the need for presenting separate sets of curves for 
ducts with different aspect ratios. 

Axial Velocity Distribution in Elliptical Ducts. The axial 
velocity at any point in the flow field can be calculated by the 
use of equations (7), (9), and (13). The manner in which the 
results depicted in Fig. 2 were calculated consisted in assigning 
a value to X2 + Y2 and computing the values of the axial 
velocity W for a series of values of r) ranging between 0 and 1. 
For X2 + Y2 < i\, W was calculated using equation (9) and for 
X2 + Y2 >r), W was calculated using equation (7). For each 
value of rj, the corresponding value of the stretched 
streamwise coordinate [(1 + X2)/X]Z was calculated using 
equation (13). 

One way to view the curves in Fig. 2 is to imagine that the 
duct cross section is divided into a number of zones by the 
concentric ellipses X2 + Y2 = C where 0 < C < 1 . Let each of 
these ellipses represent the cross section of the bounding 
surface of a stream tube extending from Z = 0 to Z = 00. Then 
the curves in Fig. 2 represent the velocity of the fluid particles 
on the surface of each of the stream tubes. For example, the 
curve corresponding to X2 + Y2 = 0 represents the velocity 
along the duct axis which may be viewed as a stream tube of 
zero radius. Likewise the curve corresponding to X2 + Y2 = 1 
represents the velocity along the duct wall which is the outer
most stream tube in a set of eleven stream tubes imagined to 
be constructed. It is seen from Fig. 2 that all the curves 
originate at W= 1 and asymptotically approach the fully 
developed values of W given by equation (8). 

Axial Velocity Distribution in Circular Tubes. The solution 
to the problem of flow development in a circular tube is 
obtained as a limiting case of the general solution to the 
problem of flow development in elliptical ducts. Figure 3 
contains a set of nine curves representing the axial velocity 
distribution in the entrance region of circular tubes. These 
curves are obtained from equations (7), (9), and (13) in a 
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Fig. 2 Axial velocity distribution in the entrance region of elliptical 
ducts 
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Fig. 3 Comparison of the predicted axial velocity distribution with the 
experimental measurements for a circular tube 

manner analogous to the one used in deriving the curves in 
Fig. 2. 

The experimental data points shown in Fig. 3 are due to 
three independent investigators: Pfenninger [5], Nikuradse 
[4], and Reshotko [6]. The maximum deviation of the present 
analysis predictions from the experimental measurements is 
seen to be near the duct inlet section Z<0.04. This deviation is 
no more than 7 percent with the present analysis predictions 
generally lower than the measurements. Part of the reason for 
this deviation is attributable to the practical difficulties en
countered in experimental setups to simulate the uniform flow 
condition at the duct inlet section. Farther down the duct 
Z>0.04, the present analytical predictions are practically 
indistinguishable from the experimental measurements. 

Hydrodynamic Entrance Length. The hydrodynamic en
trance length Za prediction of the present analysis based on 
99 percent approach to the fully developed flow is given by 
equation (14). The only other analytical investigation with 
which to compare the prediction of equation (14) is that due to 
McComas [3]. The Z„ predictions of McComas appear to be 
in serious error not only due to their finiteness as already 
discussed but also due to their improper dependence on the 
aspect ratio X. This can be best illustrated for the case of a 
duct with X = 0. Physically X = 0 represents a duct whose 
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semiminor axis is compressed to zero. Intuitively it is ap
parent that in such a duct no fluid flow can occur and as such 
Zc,, of such a duct should be zero. According to reference [3], 
Z„ of duct with X=0 is nonzero being 81 percent of the value 
for a circular tube. This latter value is predicted to be 0.1040. 
According to the present analysis for a duct with X= 0, Za = 0 
and for a duct with X=l, i.e., circular tube, Z„ =0.2566 
based on 99 percent approach to the fully developed flow. 

Christensen and Lemmon [9] as well as Friedmann, et al. 
[10] have compared the predictions of Z„ for circular tube by 
various investigators. The predicted values range between 
0.1040 and 0.2700. The values on the lower side are based on 
the analyses which predict abrupt approach to the fully 
developed flow and as such are inherently in error. The 
present analysis value of 0.2566 is on the higher side of the 
predicted values and compares favorably with the predictions 
of the analyses which are regarded as accurate. For example, 
in the above-cited references the values 0.2700, 0.2600, 
0.2500, and 0.2440 are attributed to Campbell and Slattery, 
Boussinesq, Nikuradse, and Langhaar, respectively. The 
value of 0.2500 due to Nikaradse is an experimental value and 
compares particularly well with the present analysis value. 

Axial Pressure Drop. The axial pressure drop at any cross 
section in the entrance region of elliptical ducts can be 
calculated from equations (17) and (13). The upper curve in 
Fig. 4 represents the axial pressure drop computed from these 
equations. Figure 4 also contains a straight line passing 
through the origin and sloping upward to the right. This line 
represents the ideal pressure drop given by equation (18) for a 
flow which is hydrodynamically developed right from Z = 0. 
The vertical displacement of the actual pressure drop 
represented by the upper curve from the ideal pressure drop 
represented by the straight line is the incremental pressure 
defect K given by equation (19). 

In the limit when the flow becomes hydrodynamically 
developed asymptotically at Z=<x, K attains its fully 
developed value Ka which according to equation (19) is seen 
to be 7/6. This value is independent of the duct aspect ratio X 
as is the value of 4/3 predicted by Lundgren, et al. [2] for 
elliptical ducts. The present analysis prediction of 7/6 is 12.5 
percent lower than the prediction of Lundgren, et al. [2]. No 
experimental measurements of Ka for elliptical ducts are 
available to assess the relative accuracy of the two predictions. 
It appears that the analysis of [2] overestimates Kx. This is 
inferred from the experimental measurements of Ka by 
Sparrow, et al. [11] for rectangular ducts vis-a-vis the 
predictions of Lundgren, et al. [2]. T h e ^ values measured 
by Sparrow, et al. [11] for ducts with aspect ratios 5 and 2, 
respectively, are 0.89 and 0.99 compared with the values 1.00 
and 1.38 computed by Lundgren, et al. [2]. Thus for rec
tangular ducts the analysis of reference [2] overestimates K„ 
by 11 to 28 percent. 

In ducts with discontinuities, K„ is a function of the aspect 
ratio. However, in elliptical duct Ka turns out to be in
dependent of the aspect ratio. The explanation of this 
somewhat surprising result can be given in terms of the inertia 
force and the corner effect. Within the inviscid core of the 
entrance region there is a balance between the inertia and the 
pressure forces. Since the inertia force is proportional to the 
fluid acceleration and to the fluid core cross-sectional area, 
viz., IT (a — &x)(b — dy), it is apparent that the inertia force and 
hence the pressure force including its dimensionless measure 
K must depend on the aspect ratio b/a. The aspect ratio 
dependence of K in the entrance regions of ducts with 
discontinuities is more pronounced because the viscous effects 
in the neighborhood of the discontinuities are accentuated due 
to interaction among the viscous influence lines emanating 
normally from the adjoining surfaces. This is the so-called 
corner effect which is strongly dependent on the aspect ratio. 

K 

°—pT—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i— 
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[flt\*)/X] Z 
Fig. 4 Axial pressure drop in the entrance region of elliptical ducts 
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Fig. 5 Friction coefficients in the entrance region of elliptical ducts 

When the flow becomes fully developed the inertia forces 
vanish thereby eliminating one source of aspect ratio 
dependence of K. Since in ducts with smooth continuous walls 
(e.g., circular and elliptical ducts), this is the only source of 
aspect ratio dependence, K„ for such ducts becomes in
dependent of the aspect ratio. In ducts with discontinuities 
(e.g., rectangular and triangular ducts) the additional source 
of aspect ratio dependence, viz., the corner effect persists in 
the fully developed region. This renders K„ for such ducts a 
function of the aspect ratio. 

According to the present analysis as well as the analysis of 
Lundgren, et al. [2], the predicted K„ values for elliptical 
ducts should apply to circular tubes since K„ is independent 
of the aspect ratio. Schmidt and Zeldin [12] have given rather 
extensive comparison of the predicted and the measured K„, 
values for circular tubes. The analytically predicted values 
range between 1.08 and 1.41 while experimentally measured 
values range between 1.00 and 1.45. The present analysis 
prediction of 7/6 falls on the lower side and the prediction of 
4/3 by Lundgren, et al. [2] on the higher side of the spectrum 
of K„ values referred to above. 

Some accurate measurements of the axial pressure drop in 
the entrance region of a circular tube were made by Shapiro, 
et al. [7]. Their experimental data in the range 
0.00004<Z<0.004 is correlated by the equation P=6.87VZ. 
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Within the range of applicability of this correlation, the 
predictions of the present analysis agree with the values 
computed from the correlation within 2 percent. Even beyond 
the range of applicability of the correlation, the analytical 
predictions agree fairly well with the values computed from 
the correlation. In the range 0.004<Z<0.02, the agreement is 
within 10 percent. Thus it appears that the correlation can be 
extrapolated considerably beyond the range of the ex
perimental measurements. 

Friction Coefficients. The local friction coefficients / and 
the average friction coefficient / at any duct cross section can 
be calculated from equations (13), (20), and (22). The 
calculated results are displayed in Fig. 5. In constructing Fig. 
5, the duct aspect ratio X had to be incorporated in the ab
scissa as well as in the ordinate so as to obtain universal curves 
applicable to elliptical ducts with any value of X. 

At the duct inlet both/and/possess infinite values. This is 
due to the fact that / and / are derived from the pressure 
gradient given by equation (16) which has an infinite value at 
the duct inlet. The only physical significance to be attached to 
this infinite value is that at the duct inlet the axial pressure 
changes very rapidly due to the contribution of the viscous 
forces to the overall force balance. 

Concluding Remarks 

The problem of flow development in elliptical ducts is 
solved in closed-form by the Karman-Pohlhausen integral 
method. The resulting solution is extremely compact and 
readily amenable to practical use. The compact nature of the 
solution is attributable to the simplifying assumption that in 
the entrance region the inner boundary of the viscous region is 
elliptical. This assumption is justified in the Appendix. The 
available velocity and pressure drop measurements for a 
circular tube are in excellent accord with the analytical 
predictions. Also when the flow becomes hydrodynamically 
developed, the solution converges smoothly with the known 
exact asymptotic solution. Both these facts provide a certain 
degree of confidence in the present analysis. 

References 

1 Shah, R. K., and London, A. L., Laminar Flow Forced Convection in 
Ducts, Academic Press, New York, 1978. 

2 Lundgren, T. S., Sparrow, E. M., and Starr, J. B., "Pressure Drop Due 
to the Entrance Region in Ducts of Arbitrary Cross-Section," ASME Journal 
of Basic Engineering, Vol. 86, 1964, pp. 620-626. 

3 McComas, S. T., "Hydrodynamic Entrance Lengths for Ducts of Ar
bitrary Cross Section," ASME Journal ofBasic Engineering, Vol. 89, 1967, pp. 
847-850. 

4 Prandtl, L., and Tietjens, O. G., Applied Hydro- and Aero-mechanics, 
Dover Publications, Inc., New York, 1957. 

5 Pfenninger, W., "Experiments With Laminar Flow in the Inlet Length of 
a Tube at High Reynolds Numbers With and Without Suction," Technical 
Report, Northrop Aircraft Inc., Hawthorne, Calif., 1952. 

6 Reshotko, E., "Experimental Study of the Stability of Pipe Flow," 
Progress Report No. 20-364, Jet Propulsion Laboratory, California Institute of 
Technology, Pasadena, Calif., 1958. 

7 Shapiro, A. H., Siegel, R., and Kline, S. J., "Friction Factor in the 
Laminar Entry Region of a Smooth Tube," Proc. U.S. Natl. Congr. Appl. 
Mech., 2nd Am. Soc. Mech. Eng., New York, 1954, pp. 733-741. 

8 Schlicting, H., Boundary Layer Theory, McGraw-Hill, New York, 6th 
edition, 1968. 

9 Christiansen, E. G., and Lemmon, H. E., "Entrance Region Flow," 
AIChE Journal, Vol. II, 1965, pp. 995-999. 

10 Friedmann, M., Gillis, J., and Liron, N., "Laminar Flow in a Pipe at 
Low and Moderate Reynolds Numbers," Applied Scientific Research, Vol. 19, 
1968, pp. 426-438. 

11 Sparrow, E. M., Hixon, C. W., and Shavit, G., "Experiments on 
Laminar Flow Development in Rectangular Ducts," ASME Journal of Basic 
Engineering, Vol. 89, No. 1, Mar. 1967, pp. 116-124. 

12 Schmidt, F. W., and Zeldin, B., "Laminar Flow in Inlet Sections of 
Tubes and Ducts,'M/CA.E Journal, Vol. 15,1969, pp. 612-614. 

A P P E N D I X 

It is a well-recognized fact that the viscous effects in a 
flowing fluid confined in a duct diffuse normally from the 
duct wall. The obvious reason for this is that at the duct wall 
there is a balance between the pressure and the viscous forces. 
Since the pressure force is impressed normally upon the duct 
wall, the viscous force must be directed normally away from 
it. The second fact to be recognized is that if there are no 
discontinuities such as sharp corners in the duct wall, the 
viscous influence lines emanating normally from the wall 
remain normal to all equal velocity curves. In other words, the 
influence lines and the equal velocity curves constitute a set of 
orthogonal trajectories. This is easy to visualize when it is 
remembered that the equal velocity curves are analogous to 
the isotherms and the influence lines are analogous to the flux 
lines in the related problem of heat flow in a duct with heated 
wall and flowing fluid. Now the normal diffusion of the 
viscous effects is possible if and only if the equal velocity 
curves have the same slope at the corresponding points. Since 
the duct wall itself is an equal velocity curve connecting zero 
velocity (no slip) points this is tantamount to saying that all 
equal velocity curves have the same shape as the duct wall and 
are concentric with it. Recognizing that the inner boundary of 
the viscous region is an equal velocity curve connecting in-
viscid core velocity points, it follows that the inner boundary 
of the viscous region in the present instance must be elliptical. 
Thus the inner boundary of the viscous region can be 
represented by 

(a-bx)
2 ^ (b-8y)

2 w 

where 8X and 5y are the boundary layer thicknesses along the 
semimajor and semiminor axes, respectively, of the elliptical 
duct wall represented by 

x2 y2 

a1 bL 

By differentiating equation (B) the slope of the duct wall at 
a general point (xw,y„) can be written as 

!--(?)£) 
Since the viscous influence lines are normal to the duct wall, 

their slope at a general point {x,y) must be negative reciprocal 
of the slope given by equation (C), i.e., 

2-(F)® 
The influence lines themselves are the solution curves of the 

simple separable differential equation (D) which can be solved 
at once to yield 

y = yXa2/b2 ( E ) 

where 7 is the integration constant. Equation (E) shows that 
the shape of the influence lines is a function of the aspect ratio 
\=b/a. For example, for a circular duct with X = l, the in
fluence lines are seen to be a family of straight lines y = yx 
which are readily recognized as the radial influence lines. 

Now the normal diffusion of the viscous effects requires 
that the influence lines represented by equation (E) also be 
normal to the inner boundary of the viscous region at a 
general point (xc, yc). From equation (D) then slope of the 
inner boundary must be 

2--(?)£) 
By differentiating equation (A), the slope of the inner 

boundary at the general point (xc,yc) is also seen to be 
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dy 
dx 

(b-Sy)
2 

(a-8x)
2 \yc m (G) 

Equating the slopes given by equations (F) and (G), we have 

(b-8y) _b 
(a-8x) a 

(H) 

whence it follows that (a-8X) = fia and (b~8x)=fib where j3 
is the proportionality constant. Introducing these relations 
into equation (A), the inner boundary of the viscous region 
can be represented by X2 + Y2 = /32. 

The physical significance of /3 can now be brought out with 
the help of Fig. 1 which shows that (a — 8X) and (b — 8y) are, 
respectively, the semimajor and semiminor axes of the 
elliptical inviscid core whereas a and b are the corresponding 
axes of the elliptical duct wall. From the relations (a — 8X) = (3a 
and (b — by)=(ib it is then seen that /3 is the ratio of the 
semimajor (or semiminor) axis of the inviscid core to the 
semimajor (or semiminor) axis of the duct. A more 

meaningful interpretation of /? can be given in terms of rj 
which equals /32. The cross-sectional area of the duct is -wab 
whereas the cross-sectional area of the inviscid core is irabp2. 
Thus (32, i.e., rj represents a fraction of the cross-sectional 
area carrying the inviscid flow. From this reasoning it is clear 
that at the duct inlet f\ = 1 and at the end of the entrance region 
where the flow is completely viscous ij = 0. 

Before concluding this Appendix, it behooves us to check 
reasonableness of equation (H) which can be recast for this 
purpose in the form 

8y 
(I) 

At the duct inlet 8X = 8y = 0 and the equation (I) is iden
tically satisfied. In the fully developed region 8x — a, 8y = b 
and the condition (I) is again satisfied. Also for a circular duct 
with a = b, equation (I) predicts that 8x = 8y which is 
physically correct. Thus condition (I) correctly predicts all 
known limiting values. 
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Studies of Flows Through 
N-Sequential Orifices 
Critical mass flux and axial pressure prof He data for fluid nitrogen are presented for 
TV = 20, 15,10, and 7 N-sequential-orifice-inlet configurations uniformly spaced at 
15.5 cm. These data correlate well over a wide range in reduced temperature (0.7 < 
Tr, 0 < ambient) and reduced pressure (to Pr = 2) and are in general agreement 
with previous studies of one to four inlets. Experimental and theoretical agreement 
is good for liquid and gas critical mass flux, but inconclusive in the near-
thermodynamic critical regions. 

Introduction 

The inlets to many flow devices are not the smooth en
trances often researched. Frequently they contain a series of 
constrictions which may not act independently of one 
another. This class of flows is categorized as having 
sequential inlets. Compressors, pin-finned heat exchangers, 
separators, and labyrinth and step seals are examples of inlet 
configurations consisting of two or more such constrictions 
or, in a stricter sense, sequential inlets. The details of the flow 
dynamics and heat transfer in these configurations are in 
many cases not well understood. 

Similarity principles can often be applied to assist the 
designer in cases where the theory is incomplete or no data are 
available. In reference [1], the principle of similarity as ap
plied to thermophysical properties and fluid mechanics (with 
emphasis on the thermodynamic critical region) is shown to 
qualitatively group the experimental results for several 
physical processes, including heat transfer and two-phase 
choked flows. 

In other work [2-5] it was assumed that some form of 
similarity relationship between mass flux and reduced 
pressure was valid. It was then shown analytically and ex
perimentally that critical mass flux through well-separated 
sequential inlets for TV < 4 could be related to flow through a 
single inlet. The statement appears valid even for such diverse 
inlets as those of the orifice and Borda types [6]. 

These results also show that a similarity exists between the 
flow losses in a rough tube and those in sequential inlets. For 
example, consider a tube of length L that is artificially sub
divided into TV connected segments each of length L/N and an 
TV-sequential inlet configuration. When the values of the 
friction parameter 4fL/D are of order one or more for each 
tube segment, the flow losses through these TV connected tubes 
can be made equivalent to the flow losses through the TV 
sequential inlets [6, 7]. 

The primary purpose of this paper is to extend the range of 
available critical (choked) flow and pressure profile data of N 

Contributed by the Fluids Engineering Division and presented at the ASME 
Applied Mechanics, Bioengineering, and Fluids Engineering Conference, 
Houston, Texas, June 20-22, 1983. Manuscript received by the Fluids 
Engineering Division, January 26,1982. Paper No. 83-FE-22. 

sequential orifice inlets with TV > 4 for a large range of inlet 
stagnation conditions. As a secondary purpose, existing 
similarity principles will be used and others developed as 
required to enable designers to predict the critical mass flow 
through TV sequential inlets and to provide assessments of the 
pressure profiles. 

Apparatus and Instrumentation 

The basic components and operations of the blowdown-
type facility described in references [7] and [8] were modified 
to accommodate the various sequential-orifice-inlet con
figurations (Fig. 1). 

A photograph illustrating the TV-inlet test configurations, as 
installed in the facility, for TV = 7, 10, 15, and 20, is shown in 
Fig. 2. 

The orifice-type inlets with llD of 0.5, similar to those of 
references [6] and [7], were designed with spacers of 15.24 cm 
(6.0 in.). These provided fixed spacings of 32 orifice diameters 
between apertures, or approximately 15.5 cm aperture to 
aperture. A schematic of a segment of an TV-sequential-
orifice-inlet configuration illustrating the pressure tap 
locations and the inlet geometry is presented in Fig. 3; a 
photograph of the orifice proper is shown in Fig. 4. 

These sequential-inlet configurations were fitted between 
inlet and outlet flange adapters to accommodate the multiple 
lengths. Six threaded rods and two plastic spacers per segment 
were required to assemble and provide rigidity to the con
figuration. In principle there should be no problem with the 
assembly of TV-inlet segments, but in practice small variations 
in rod tension and combined machining tolerances causes the 
system to behave like the connected linkages of a snake. The 
configurations were assembled on a flat bench and hoisted 
into position. The multiple surfaces were satisfactorily sealed 
by vacuum-greased mylar gaskets between the flat faces. 
Pressure and flow data were recorded using automatic digital 
equipment [7, 8]. 

In general, the agreement in mass flow rates as metered by 
the tank venturi and the exhaust orifice is ±5 percent. The 
pressures and temperatures are within ±1 percent, and 
systematic deviations between pressure transducers are less 
than ±0.5 percent. The working fluid is nitrogen, and the 
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Fig. 1 Schematic of flow facility modified for operations with N
sequential inlets

reduced inlet stagnation temperature ranges from 0.7 Tr,D to
ambient gas with the reduced inlet stagnation pressure to P r •D

< 2.5.

7, 10, 15, and 20 sequential inlet in·Fig. 2 Photograph of N
stallations

conditions for the next inlet (including heat addition or ex
traction in the reservoir spacers). Repeat for the next N-l
inlets. At the Nth inlet, determine the expansion conditions
and compare to those calculated from the choked flow
constraint, including the effects of two-phase flows; if the
flow rates and the pressure ratios are within a convergence
range, they are said to be computed for the prescribed con
figuration of apertures (e.g., orifices) and any addition or
reduction of heat in the spacer reservoirs.

In essence, the constraints form the basis of a variational
approach in which a solution with the least increase in entropy
is formulated with real fluid properties determined using the
GASP code [10].

Choked Flow Rate. In theory, similarity exists via the
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Results and Analysis

The theory for flows through sequential apertures (e.g.,
orifices) is not well developed. Previous success using a
combined thermodynamic and choked-flow analysis will be
applied here [6, 7, 9]. The governing equations are given in the
Appendix and a description of the theoretical iterative ap
proach used in solving the N-sequential-inlet problem follows.

The process at the ith inlet (Fig. 5) is assumed to expand
isentropically through that inlet, followed by isobaric
recovery in the spacer reservoir with (or without) heat ad
dition. The solution is complicated by the fact that the
pressure ratios across each inlet, ri = P r.i / Pr,i-l, are
unknown, and stability of the solution is not guaranteed.
Thus, to solve the problem of flow through N inlets (Fig. 5),
one must first determine the inlet properties for the first inlet
at the given stagnation conditions. Next assume a pressure
ratio across the first inlet, rl = P r •1IP r •D; then calculate the
conditions of the expansion and determine the stagnation

---- Nomenclature

f

flow coefficient
diameter of orifice or
tube
function defined in
equation (I)
mass flux

flow normalizing
parameter, 6010
g/cm2 -s for nitrogen

g

L
I

N
P
T
X
Z

l/V
r

function defined in Subscripts
equation (1) c
tube length
orifice length iJ,M,N
number of inlets
pre~re 0
temperature r
axial location
compressibility v
density 1
pressure ratio

thermodynamic criti
cal
ith, jth, Mth, Nth
sequential inlet
stagnation
reduced by nor
malizing parameter
venturi
case for N = 1, the
single inlet, or unit
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Fig. 3 Schematic of a segment of an N·sequentlal·orlfice·inlet con·
figuration
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Fig. 6 Reduced mass flux as a function of reduced Inlet stagnation
pressure at selected reduced inlet stagnation temperatures, T, 0 for N
sequential orifice inlets with 15.2·cm spacer reservoirs '
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Flg.4 Photograph of a typical orifice Fig. 7 Reduced mass flux versus number of orifice Inlets at three
reduced inlet stagnation pressures P, 0 for selected reduced Inlet
stagnation temperatures T',0 '

G r,! = CfGr,v

The function g represents a loss coefficient for the. con
figuration, and if the combined flow coefficient and friction
factor losses for each inlet reservoir are similar, !applies.
Even though much theoretical work has been done on flows
through apertures, Gr ,! (the flow through the first inlet)
usually results from a calibration facility where it is related in
terms of flow through the classic venturi Gr,v using a flow
coefficient Cf . For the venturi Gr,v can be predicted using the
two-phase choked-flow theory [9] and with the similarity
theory using corresponding states [1-5]. Consequently if the
function f were known and Gr ,! was either estimated from
theory or obtained by calibration or through other sources,
then one could predict the mass flux through N sequential
inlets over a wide range of temperatures and pressures for a
variety of fluids.

These observations lead to the formulation of Fig. 7, which
illustrates the similarity between reduced masspux with the
number of inlets for reduced inlet stagnation pressures of0.7,
1.0, and 1.5 at selected values of reduced inlet stagnation
temperature. Although the levels change with pressure, the
locii are form similar at these pressures.

The function f is nearly exponential with N and is weakly
dependent on inlet conditions (Pr,o, Tr,o). For many cases, the
exponent may be considered a constant ranging from 0.35 for
N < 3 to 0.45 for N > 15. Thus one may write:

feN) =N-.4 (3)

A slight improvement comes from a more complex quadratic
relation. However, one can use the data figures directly.

Superimposed on the data of Fig. 7 are the theoreticallocii
calculated using the iterative procedures of the appendix and
outlined previously. As can be seen, the data and the analysis
are, in most cases, in reasonably good agreement. Moreover,

"-I', = CONSTANT
,,

::c

>-'
c..
--'«

~
u.J

ENTROPY. S

Fig. 5 Schematic H·S diagram of the N·sequential·inlet flow process

conservation equations (see also [1-5]). For the N-sequential
inlet problem, nonsimilar terms are lumped into the flow
coefficients. Losses are also lumped into the flow coefficients,
with the assumption that they remain nearly constant for all
stages. This makes the problem tractable, but masks the
complexity.

As pointed out earlier, similarity relationships between
mass flux and reduced pressure have been demonstrated for N
< 4. We must now establish form similarity for N > 4; this
can be done as follows. As seen from Fig. 6 by comparing
data for N = 7, 10, 15, and 20, the reduced mass flux locH are
form similar with reduced inlet stagnation pressure P r 0 for
selected variations in the parameter, reduced inlet stagnation
temperature Tr,o, This leads to normalizing the flow rates with
respect to that of the first inlet as a function of N and the inlet
stagnation conditions upstream of the first inlet (T;,0' Pr,o),

where

Gr,NIGr,v =g( Cf,N,Tr,OPr,O)

Gr,NIGr,l =f(N,Tr,O'Pr,O)

(1)

(2)
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SPACER-RESERVOIR AVERAGE 

1 
INLET 
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AXIAL DISTANCE, EQUIVALENT TO ( N - l ) x l 5 . 5 c m 

(b) Liquid flow. 

Fig. 8 Average connected-orifice and spacer-reservoir axial pressure 
profiles for 7,10,15, and 20 sequential orifice inlets for gas and liquid 
flows 

the change of slope corresponding to the exponent variation 
(equation (3)) is also predicted by theory. As the results of the 
analysis have previously been shown to possess form 
similarity (valid for even such diverse apertures as the orifice 
and Borda types), it appears that extending the similarity 
hypothesis to the case of N sequential inlets is justified. 

With equations (1) to (3), one can predict the mass flux for 
N sequential inlets over a large range in inlet temperature and 
pressure and possibly for a variety of fluids when either G r l 
or Cj is known. 

Pressure Profiles. Typical axial pressure profiles for the 
iV-sequential-orifice-inlet configurations with inlet stagnation 
conditions (Trfi, Prfi) are given in Figs. 8 and 9. In both 
figures, part (a) represents gas flow and part (b) represents 
liquid flows. The abscissa represents the number of orifices in 
the configuration or the axial distance (e.g., 155 cm for N = 
10). In Fig. 8 the spacer-reservoir pressures are connected by 
dashed lines and the orifice pressures are connected by solid 
lines. The pressure profiles between the orifice and the spacer 
reservoir (Fig. 9) can be inferred from the more detailed 
experimental work of references [6 and 7], and although such 
detail is not part of this experiment, the profiles can be 
represented by a series of 'horse-shoes' (Fig. 9). It should be 
immediately apparent that the locii of Figs. 8 and 9 for the gas 
and liquid cases differ significantly. In Figs. 8(b) and 9(b), 
the orifice locii vary almost linearly (slightly-concave) with 
axial position for each value of iV tested, whereas in Figs. 8(a) 
and 9(a), they are convex or parabolic and are typical friction 
loss characteristics. The spacer-reservoir locii appear 
parabolic in either case, but are essentially linear for liquid 
flows. Such pressure profiles are not only characteristic of iV 
sequential apertures, but also of flows through high LID 
tubes [12] and shaft seals of high-performance turbomachines 
[13, 14]. 

The axial pressure profiles for inlet stagnation conditions 
(Trfi, Prfi) appear to be similar for large N when normalized 

r- PROFILE BASED ON 
" ^ f ^ / MEASUREMENTS OF REF. 1 

ORIFICE AVERAGE 

SPACER-RESERVOIR 

AVERAGE 

AXIAL DISTANCE. EQUIVALENT TO UJ- l l X 15. 5 ct 

(L>> Liquid New. 

Fig. 9 A comparison of axial pressure profiles based on detailed 
measurements of reference [7] and average connected-orifice and 
spacer-reservoir profiles for 7 , 1 0 , 1 5 , and 20 sequential orifice inlets for 
gas and liquid flows 
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NORMALIZED AXIAL POSITION. (X/Xchoke = Nj/^Nj) 

Fig. 10 Normalized axial pressure profiles for N sequential orifice 
inlets for gas and liquid flows 

in terms of the number of sequential inlets and the inlet 
stagnation pressure. 

{Pr)0=Pr(x)/Pr(x = 0) (4) 

X 
Xc\ k 

E N, 
1=1 

(5) 

where Pr = P/Pc, X the axial distance, X choke the distance 
to the point of choked flow (assumed to be in the exit orifice), 
and Nj represents a segment of an N-sequential-orifice-inlet 
configuration (Fig. 3). Applying equations (4) and (5) to the 
data of Fig. 8 produces the two distinct locii for all values of 
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N shown in Fig. 10. At this time, the limitations of equation 
(5) are not clear; e.g., the limits of Nand that all the distances 
between Nj and Nj - 1 need be the same. 

Since the liquid and gas profiles represent Tr0 = 0 . 7 and 
Tr]0 = 2.3, respectively, it is quite apparent that the shapes of 
the locii of Fig. 10 depend on Trfi. From earlier work, [13-15] 
it is known that these locii are nearly linear for Tr0 < 1; 
parabolic for Tr 0 > 1; and experience a transition from linear 
to the parabolic near Trfi = 1. However, at 16,200 LID [13], 
the pressure locii are a little more concave than either here or 
for the shaft seals [13-14]. Such evidence indicates that for 
very large N, the liquid profiles will also be more concave. 
Such corroborating evidence also extends the hypothesis of 
the similarity relationship between N segmented rough tubes 
and Nsequential inlets. 

It is well known that mass flux in choked flows is more 
readily predictable than are the pressure profiles. Yet in terms 
of the normalized coordinates of equations (4) and (5), the 
pressures do appear to be predictable directly from the data or 
within the limitations of the theory as 

Pr,j/Pr,0- rtr, (6) 

where f, is the calculated pressure ratio across the ith aper
ture. The theoretical locii (Fig. 10) were calculated for N = 
10. Thus form similarity for N sequential inlets appears to 
exist for both choked-mass flow rates and associated pressure 
profiles. 

Summary 

We have presented critical mass flux and pressure profile 
data for iV-sequential-orifice-inlet configurations where N = 
20, 15, 10, or 7. The orifices were uniformly spaced at 15.5 
cm, and the working fluid was nitrogen. 

The data correlated well over a large range of reduced inlet 
temperatures from 0.7 Trfi to ambient and reduced pressures 
from near saturation conditions to Pr0 = 2. Data are also in 
good agreement with previous studies of one to four inlets. 

The agreement between experiment and analysis is good for 
the liquid and gas critical mass flux cases, but inconclusive for 
the near-thermodynamic critical regions. 

Pressure profiles normalized in terms of inlet stagnation 
pressure and axial distance to choke appear independent of 
the number of inlets. The pressure profile shape changes from 
slightly concave to convex (parabolic friction loss form) with 
increased inlet stagnation temperature. 

It does appear that a form similarity hypothesis can be 
extended to the case of N sequential inlets and used by the 
designer to determine both the chocked-mass flow rates and a 
description of the associated pressure profiles. 

Pressure profiles normalized in terms of inlet stagnation 
pressure and axial distance to choke appear independent of 
the number of inlets. The pressure profile shape changes from 
slightly concave to convex (parabolic friction loss form) with 
increased inlet stagnation temperature. 

It does appear that a form similarity hypothesis can be 
extended to the case of N sequential inlets and used by the 
designer to determine both the choked-mass flow rates and a 
description of the associated pressure profiles. 
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A P P E N D I X 

Example of Analysis - An Analysis of Sequential Inlet Flow1 

The flow process is neither steady, adiabatic, nor fric-
tionless, as described in the text. However, if we simply ignore 
these problems, the governing equations for the ith inlet, see 
sketch and Fig. 10, can be written as (reference [7]): 

Continuity 

dpu. 

Momentum 

Energy 

A
 = 0 

OXi 

dpU/Uj dp 

dx. dXj 

dx, 
pu,H0=0 

(Al) 

(A2) 

(A3) 

(A4) 

p=p(p,H,xa) (A5) 

Similarity (extended van der Waals one-fluid model for 
corresponding states) 

/ V T \ 
Z,„(T,V,xa) = Z0{-,j) 

(V T\ g„,(V,T,xa) = fgo{-,-) 

where 

State 

H0=H+-u,u, 

-RT( £J xa\nxa-\nh) (A6) 

Reprinted from NASATP-1792, May 1981. 
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where 

•>Pi+i 
(A13) 

h ~ Ij \jXaX»hafifi 

fl1 — 2 ^ LjXaX$fciWha0fl 
a 0 

Jaa,0 — I rp. 1 "aa,0 

( V%a\ 
haafl

 = I ~^T ) $aafl 

(A7) 

dp 

-l P 

Consider now the following cases: 
(1) When K / + i > > «; or «, —0, the mass flux across the z'th 

inlet becomes 

G2 = (p/+1H, + 1 ) 2 =2p 2
+ 1 - ^ (A14) 

Jp,-+i p 

(2) When « f+1 ~ u, or «,—«,+1, /?,+, —•/?,• and jetting can 
occur, provided the jet has been established elsewhere in the 
system and 

it) dp 
(A15) 

(A8) (3) For plug flow continuity, w = piuiAi = pi+iUi+iAi+i, 
the mass flux becomes 

2ph ' - (A16) 72 = r 
Isentropic restraint 

dp 
TdSi = dH- — =0 i = l,n 

P 

Isobaric restraint 

(A9) 

(A10) Si+[=S(phH0) i=l,n 

Choking constraint 

G — " 2 ( f ). = h\?.vdp (A11) 

It appears that at the 30-diameter separation choking can 
occur at the entrance or exit of the last (/" = «) of the sequential 
inlets. At the 0.8-diameter separation choking can occur at the 
inlet of the first (/= 1) inlet of the sequential'inlets or at the 
exit of the last (/' = «) inlet. The details of the choking con
straint, at a fixed position, for flows with change of phase are 
quite complex and, although used herein, will not be repeated 
at this time; see reference [9] for further details. 

Furthermore, if one isolates an inlet (one section of Fig. 4 
or 7) and forms it into a blackbox, the conservation equations 
yield the isentropic expansion restraint 

[ l - ( / 0 ; + 1 ^ l / + 1 / p , V l ; ) 2 ] J/>/+i p 

Again, consider two cases: (a) when Af> >Aj+u case (1) 
above results; and (b) when (.4,+1 pi+ { — p,v4,)> it leads to case 
(2). 

(4) In jetting data (references [3, 4, and 13])p, + 1 > ph and 
it follows that ui+l <w,- and that the system functions as a 
diffuser. 

The same results are achieved with enthalpy as the in
dependent variable; from the energy equation it follows that 

' Pi dp 
(All) 

'Pi+t P 

The enthalpy relation is used for the preliminary calculations 
herein. 

In this report we use the simplified form of van der Waals 
corresponding-states principle since we only have data for 
fluid nitrogen. 

a , 0 • 1 

dH0=dH+d-

dp + pd— =0 

(A12) 

<t>aa,o = 1 

f=TR = 

P» = 

h=VR = 
V 

(A18) 

or 
dp 

-dH=0 

Thus we need only consider an isentropic process, and from 
the momentum equation we find 

and 

GR = 

All thermophysical properties were calculated by using the 
computer code GASP (reference [10]). 
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Laminar Flow in a Porous Tube 
It is shown that an axisymmetric solution of the Navier-Stokes equations can be 
obtained for potential flow superimposed on Poiseuille flow. The result is used here 
to obtain a fully developed solution for flow in a porous pipe with variable suction 
or injection and to show how to obtain the suction distribution needed to change a 
specified axial velocity distribution at one cross-section to a specified axial velocity 
distribution at another cross-section. 

1 Introduction 

Fluid flow through cylindrical pipes with mass transfer at 
the wall has received much attention in recent years because of 
its many practical applications, for example, in transpiration 
cooling, gaseous diffusion technology, control of fluids in 
nuclear reactors. The experimental and theoretical in
vestigations have been mainly concerned with steady, in
compressible, laminar flow with either constant injection or 
suction. 

All the previous research, to the best of the author's 
knowledge, has been confined to constant suction or in
jection. The solutions have either dealt with the fully 
developed profile in which the axial velocity profile is taken to 
be similar at all cross-sections (see, for example, references 
[1-8]) or with the inlet length region which has been solved 
numerically (see, for example, references [10-12]). One 
difficulty with these solutions (see [15-17]) is that sometimes 
the fluid has a "long memory of the inlet velocity profile" 
and the fully developed profile is never reached. Another 
difficulty is that the fully developed solution is irrelevant 
when the axial velocity profile changes shape. The prime 
purpose of this paper is to introduce solutions with variable 
suction at the wall which will overcome these difficulties. 

In Section 2 it is shown that an axisymmetric solution of the 
Navier-Stokes equations can be obtained for potential flow 
superimposed on the Poiseuille flow. It is shown that the 
corresponding solution for parallel plates or for an annulus 
can only exist provided one of the walls moves, that is, for 
Couette flow. The solution developed in this section proves to 
be useful in other problems besides the flow in porous 
channels; for example, the author has used it to find solutions 
to some flows in pipes with varying cross-sections. The ap
plication to fully developed flows in a porous pipe is made in 
Section 3. Here it is shown how analytic solutions for variable 
suction or injection can be developed; these could be extended 
to a variety of heat transfer problems. 

An enlightening question is posed in Section 4. Given the 
axial velocity profile at one cross-section (probably the inlet) 
what distribution of suction or injection is required to 
produce a specified velocity distribution at another cross-
section? An analytic answer follows which could be used to 

calculate the suction distribution required in the inlet length to 
produce the fully developed constant suction profile or the 
fully developed variable suction profile. Corresponding to 
each inlet axial velocity profile there are many possible 
distributions and these will be discussed in later papers. 

The pressure distribution is obtained in Section 5 where it 
pointed out that another class of problems could be tackled by 
assuming that pressure at the inside wall of the pipe is related 
to the outside pressure by a suitable law—such as Darcy's law 
for porous media—and finding the resulting suction 
distribution. 

Some particular examples of variable suctions are chosen to 
illustrate the flows in Section 6 and then applied to a specific 
problem in Section 7. Unfortunately there are no ex
perimental results for variable suction and these are now 
desirable. Consequently in Section 7 the experiment by Quaile 
and Levy [12] was chosen in which fluid with a parabolic axial 
velocity profile enters a closed pipe with constant suction at 
the walls. Surprisingly good agreement between the theory in 
the present paper and the experimental and numerical results 
is obtained. It is also demonstrated that the failure of the inlet 
profile to develop into a fully developed constant suction 
profile is not unexpected and that indeed variable suction in 
the inlet length would be the best way of achieving such a 
profile. 

It is clear that work in this paper leaves many questions to 
be answered and numerous extensions, for example, to heat 
transfer. 

2 The Equations 

Consider the steady laminar axisymmetric motion of an 
incompressible fluid in a semi-infinite or in a finite circular 
cylinder of radius a. Choose a cylindrical polar coordinate 
system (r, 6, z) where the axis 0z lies along the center of the 
tube, r is the distance measured radially and 6 is the azimuthal 
angle. Let u and v be the velocity components in the directions 
of z and r increasing, respectively. Then, for axisymmetric 
flow, the equation of continuity is 

Contributed by the Fluids Engineering Division and presented at the ASME 
Applied Mechanics, Bioengineering, and Fluids Engineering Conference, 
Houston, Texas, June 20-22, 1983. Manuscript received by the Fluids 
Engineering Division, May 24,1982. Paper No. 83-FE-5. 

d du 
T-(rv)+r — 
or dz 

and the Navier-Stokes equations are 
1 dp 
p dz 

du du 
u — Yv —— 

dz dr 

= 0 

+ v V 2u, 

(1) 

(2) 
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dv dv 1 dp , / , t; \ 
u — - + u — = f- +v{ V 2 u - ^ ) , (3) 

3z dr p dr \ r2 / 
where 

, a2 i s a2 

v = 1 1 
d/-2 r dr dz2 ' 

and where p is the pressure, p the density and v the kinematic 
viscosity of the fluid. 

The boundary conditions at the pipe wall are 
u = 0 a t r = fl, (4) 

together with the speed of injection or suction which is 

v=V(z) atr=a. (5) 

In addition, symmetry implies that 

y = 0 a t r = 0 (6) 
The boundary conditions (4)-(6) will be applied later. For the 
present, suppose that there is a solution of equations (l)-(3) 
of the form 

3 dd> 
u = u0(r) + —4>(r,z), v= -£- (r,z) (7) 

oz or 

For example, the velocity component u0(r) could represent 
the Poiseuille flow in a pipe or annulus. The equation of 
continuity is immediately satisfied provided 

V 2 0 = O, (8) 

that is, <t> is an harmonic function. 
The Navier-Stokes equations (2) and (3) become 

("o + <M0 r a+("o ' + < M 0 r = Pz + "V 2u0, (9) 
P 

(ua + <$>z)$rz + <$>r4>rr= pr. (10) 
p 

Elimination of the pressure/? gives 

or 

or, using (8), 

{ruS-ui)<t>r=rv—C72u0). (11) 

To satisfy (11) exactly, u0(r) must be of the form 

uo(r)=0-\r2, (12) 

where X and /3 are constants. 
It follows that an exact solution of the Navier-Stokes 

equations for axisymmetric flow is 

w = ( 3 -Xr 2 + <f>z< v = <t>r, 

where <j> is an harmonic function. This surprising result may 
have several useful applications; here it will be used to provide 
a deeper understanding of flows in porous channels. 

It is immediately seen that u0(r) = X(a2 - r2) is of the 
form (12) and satisfies the no-slip condition (4) so that 
Poiseuille flow in a circular pipe has this exact perturbation. 
Clearly the flow in an annulus with outer wall r = a and inner 
wall r = b is not of the form (12). However if one wall is 
allowed to move, say the inner wall r = b has the appropriate 
velocity X(a2 - b2), then uQ(r) = \(a2 - r2) is a possible 
solution. This is, of course, Couette flow. Now it is known 
that the flow between parallel plates can be obtained from the 
flow in an annulus (see Terrill [13]). This can be seen by 
writing b = a{\ + e), r = b + eay, where e is small, and 
letting e — 0. The walls of the annulus become the parallel 
plates y = 0 and y = 1. Thus in plane flow, the potential flow 
can only be superimposed on Couette flow. 

The conclusion reached is that while potential flow can be 
superimposed on Poiseuille flow in a pipe, it is not possible to 
do this for the annulus or for parallel plates. This superim-
position can only be made in the latter cases when one of the 
walls is allowed to move with the appropriate speed, that is 
for Couette flow. 

3 The Solution for Fully Developed Flow 

For flow in a porous pipe, the solution from (4), (7), and 
(12) is 

u = Ma2-r2) + cj>z, v = <j>r, (13) 

where X is an arbitrary constant and 4> is a solution of 
Laplace's equation (8) satisfying the boundary conditions 

at r = 0, <j>. = 0 
(14) 

at r = a, </>z=0, 4>r=V(z). 

It is readily seen that typical solutions of (8) are of the form 

<t>= [A coshaz+B sinhaz][J0(ar) +DY0(ar)] 

where A, B, D, and a are arbitrary constants and where Ja(ar) 
and Y0(ar) are Bessel functions of the first and second kind, 
respectively. Now Y0(ar) is infinite at r = 0 so thatD = 0 and 
since Jo(ar) is zero at r = 0, the condition 4>r = 0 at r = 0 is 
automatically satisfied. The boundary condition <j>z = 0 at r 
= a necessitates J0(aa) = 0, that is aa are the zeros of the 
Bessel function 70 . Let these zeros be a„a(n = 0, 1, 2, . . .), 
then the appropriate solution is 

co 

<t>= ZJ (A„coshct„z+B„smhanz)J0(ce„r) (15) 
« = i 

where J0(ana) = 0. This solution corresponds to the 
prescribed speed of suction 

V(z) = - 2J an[A„cosha„z + B„smha„z\Ji(ana). (16) 

It follows that injection or suction with speed (14) should 
result in the fully developed profiles given by (13). In contrast 
to all the previous analytic solutions which have necessitated 
constant suction or injection and which have produced similar 
velocity profiles for u, the above work shows that analytic 
solutions for variable suction or injection are now feasible 
and, in general, their resulting velocity profiles for u will be 
changing shapes. A fascinating feature is that to any par
ticular solution it should be possible to add a multiple of (a2 

- r 2 ) to u. 
These fully developed flows are discussed more fully in 

Terrill [14] using a completely different approach to the 
problem. An altogether new method of tackling these 
problems will now be proposed which will provide further 
insight into the flow through porous pipes. 

4 An Analytic Solution for Developing Flow 

The object of all previous papers has been to specify V and 
to find the resulting velocity distribution either analytically 
for the fully developed flow or numerically for the developing 
flow. Instead of this method, the axial velocity distribution at 
one cross-section will now be assumed and the question will be 
asked "What velocity of suction is required to produce a 
specified axial velocity distribution at another cross-section?" 
The problem of finding <t> is analogous to a heat conduction 
problem in which either </> or 4>z is taken to be the temperature 
and it simply remains to solve Laplace's equation subject to 
the temperature distribution given on a circular cylinder. 

Suppose that the axial velocity component at z = 0 is u(r) 
= X(A2 - r2) + f(r) and that this profile gradually changes 
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until a t z = /, say, it becomes u(r) = \(a2 - r2) + g(r). It 
may be noted that X is arbitrary and could be zero while/(r) 
and g (r) are assumed to be reasonably well behaved functions 
that must satisfy/(a) = g(a) = 0. Then it only remains to 
solve 

V 2 0 Z = O (17) 

subject to the boundary conditions 

at z = 0, <t>z=Ar) (18) 

at z = l, <t>z=g(r) 

and 0< z < / , / = « , 0Z=O. 

This is a typical heat conduction problem whose solution can 
be readily constructed from those given in Carslaw and Jaeger 
[18] or Moon and Spencer [19]. It immediately follows that 

v î cA„smha„(l-z) +B„smha„z^) , , 
: = k I s M W ) M a " r ) (19) 

where A"=^d^w\lrf(r)Ma''r)dr 

and B"=^j^nXrg(r)J^"r)dr 

(20) 

and a.na are the zeros of the Bessel function J0, that is, 
J0(a„a) = 0. 

Integration of (19) gives, taking 4> = 0 at r = a, 

„ = 1 an K-

1 C Bncosha„z—A„coshan{l—z) 

a„ v. sinha,,/ 

so that the radial velocity component is 

j-A>(a„ r) 

V = 4>r= ^ 
„ _ 1 ^ 

/l„cosha:„ (l-z) -5„cosha„z 

sinha„/ J J\ (a« r). (21) 

Hence the required velocity of suction needed to change the 
given axial velocity distribution is 

V(z)- tl /4„cosha„ (/—z) —B„coshct„z 

smha„l 
jJ\(<x„a ) (22) 

where the A„ and B„ are given by (20). 
Although the problem is now solved, it is instructive to 

study some particular features of the solution. Given an inlet 
velocity profile/(/•) at z = 0, it can be used to calculate the 
suction distribution V(z) that is required to produce at the 
end of an entry length / the desired fully developed profile 
g(z). This fully developed profile could be either one of 
constant suction flows given in references [1-8] or one of the 
variable suction flows outlined in Section 3. However, should 
this suction distribution V(z) be unsuitable for experiments, 
other distributions can be found by dividing the inlet length 
into a number of subdivisions; an example of this will be given 
later. Alternatively the solution could be regarded as fully 
developed with a constantly changing velocity profile. Before 
looking at a few specific examples, the pressure distribution 
for the flow will be calculated. 

5 Pressure Distribution 

For the velocity components (13), equations (9) and (10) can 
be readily integrated to yield 

P + p{^ (<l>r2 + <i>z2) + Ho<t>z + ui\<t>rdz]=H(r)-4\fiz (23) 

where «0 = X (a2 - r2), <j>r and 4>z are given by (21) and (19), 
respectively and H(r) is an arbitrary function of r. 

Previous research workers on flows with constant suction 
or injection have usually given the pressure variations along 
the center line or along the wall for analytical, numerical or 
experimental results. From (23) it is immediately seen that at r 
= 0 

( p ) r = o + p ( y ^ 2 + ^ 2 ^ ) r _ 0 = # ( 0 ) - 4 X / « (24) 

where, from (19), 

(<M 
°° ( >l„sinhQ!„ (/—z) +5„sinha„z 

sinha„/ }• 
An even simpler result is obtained for the pressure variation 
along the wall, namely, 

(P)r -a+\Pv2- P\v 2hap\Vdz = H(a)-4\ia, (25) 

where V is the velocity of suction. The latter form is par
ticularly interesting as it shows that between two cross-
sections z = Z\ and z = z2, say, the change in (p)r=a + 1/2 
pV2 is simply 

>H 
*2 

2\p\a\ Vdz-2v(z2-zi) 
«i 

(26) 

The axial pressure distribution at the walls can be used to 
provide a different set of solutions which will be the subject of 
a future paper. The difference between the pressure inside the 
pipe wall (25) and a given pressure distribution outside the 
pipe wall can be assumed to be proportional to a power of V 
(see Taylor [20]) or can be related to Darcy's law for porous 
media. The resulting equation can then be solved for V(z) to 
give sets of fully developed solutions corresponding to the 
assumptions made at the wall. 

6 Some Particular Cases 

To investigate further the links between the axial velocity 
profile and the suction or injection distribution at the wall, 
some particular cases will be shown. 

Case 1 /(r) = g(r). It immediately follows from (20) that 
when the inlet axial velocity profile and the final axial velocity 
profile are identical then A„ = B„ and (19) becomes 

„ A„cosha„ ( y - z ) 

<t>z= X) : Jo(<x„r) 
a J 

cosh-

and the appropriate suction is, from (21), 

/l„sinh 

Viz) = £ 
« « ( y - * ) 

cosh 
2 

J\(u,,a). 

A parabolic profile can be maintained without suc
tion—which is obvious since it is Poiseuille flow in an im
permeable pipe. For any other flow it is necessary to have 
suction and injection; the suction in 0 < z < 1/2, say, 
balanced exactly by the injection in //2 < z < /. From the 
conservation of mass, this result is to be expected. It may be 
noted that for / very small, V(z) is linearly proportional to 
(J/2 - z) while/(/-) - 4>z is proportional to (/ - z)z. 

Case 2 gig) = - f(r). gives 
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<t>z 

m A„sir>han( — -zj 

]C — — Jo(.<*nr) 
„=i sinha„//2 

where An is given in (20) while the suction distribution is 

v4„cosh 

H«) = £ 
a " ( j - z ) 

sinha„l/2 
Jx(a„a). 

Although for f(r) > 0 it is clear that g(r) < 0, the axial 
velocity given by (13) may still be positive as there is also the 
arbitrary term \(a2 - r2). For / small, the value of 4>z 

changes linearly while V(z) is approximately constant. 

Case 3 g(r) -* 0 as z — °°. This is a particular simple 
example with 

00 Oo 

<t>z= T,Ane-a"zJ0(a„r) and V{z)= £ A»«'-*J\(a„a) 
n=1 n=l 

as the solution. This shows the effect of a sudden burst of 
injection or suction near to z = 0. For example, write u(r) = 
(X + e) (a2 - r1) + /(/•) where/(r) = - e(a2 - r2). Then 
the solution could be used to show how a Poiseuille flow could 
be increased from \(a2 - r2) to (X + e) (a2 - r2) by a 
suitable injection of fluid in the neighborhood of z = 0. This 
could be repeated at further cross-sections downstream. 

Case 4 g(r) = - f(r) = - C(a2 - r2) . The constant C is 
arbitrary here. Theoretical workers and experimenters have 
chosen a variety of inlet profiles of which the parabolic has 
been one of the most popular. 

Then, from (20), theA„ in Case 2 are given by 

A . - 2 

a2JM 
Now 

and 

— - j \ " C(a2r-ri)J0(a„r)dr 
„a)2 Jo 

aJi(ana) 
rJ0(a„r)dr 

r3J0(anr)dr= J\{a„a) 
Jo a„ 

2a2 

-J2{<xna). 

Further using J0(a„a) s 0 and (2/aa„) Jx(a„a) = J0(a„a) 
+ J2{a„a) the expression for A„ simplifies to 

8aC 

a « V i (<*„«)] 
Hence, from Case 2, the suction distribution 

cosha„(^y -zj 

nz) = £ 8aC 

sinh-
a„l 

(27) 

produces a change in the axial velocity u given by 

/ 

• LJ 
8aC 

sinha, 
• • ( T - ) 

sinh-
a„l J,(a„a) 

(28) 

These results will now be used in considering a particular 
problem. 

7 A Theoretical and Experimental Comparison 

It is difficult to compare the theory in the present paper 

with previous research papers since they have all involved 
constant suction or injection. However, as an example, the 
problem considered by Quaile and Levy [12] will be studied. 
They took the tube to be closed at the downstream end, z = L 
say, so that the fluid which enters at z = 0 is extracted with 
constant radial velocity uniformly over the length L. The inlet 
profile was chosen to be parabolic and the transverse (i.e., 
radial) pressure variations were neglected. Experimental and 
numerical results were presented representing an inlet length 
problem, that is, an axial velocity profile that was not similar 
at all cross-sections. 

An interesting attempt to produce comparable flows could 
be made by dividing the pipe into n equal sections, each of 
length Lin, such that the inlet axial velocity K{a2 - r2) is 
reduced by an amount 2C(a2 - r2) across each section. For 
the fluid to be completely extracted by x = L, it follows that 
2nC = K. Now consider the m' th section. The axial velocity 
at the start of the section is u =um_x + C(a2 - r2) and at the 
end of the section it is u = um_x - C{a2 - r2) where 

=K 

[K-(2m-\)C\(a2 

(2m -1) 
1 

2n 

-r2) 

](a2-r2). 

The suction distribution in the m 'th section is given by (27) 
and the axial velocity u — u„,_{ + 4>z by (28). [Note that in 
(27) and (28) the z should be replaced by zm-\ = z — (m — 
\)L/n and 0 < zm_, < /.] The experimental and numerical 
results presented by Quaile and Levy include several curves of 
the axial pressure variations along the pipe. The axial pressure 
increase Ap,„_ x across the m 'th section is, from (24), 

Ap„ -pK [ -
(2/77-1) 

2/7 

CKa*-AvL -4eL~> 

~n V 
(29) 

To conform with the notation of Quaile and Levy it is 
necessary to introduce 

(i) an average inlet axial velocity component u0; it is readily 
shown that w0 = ViKa2, 

(ii) a typical suction Reynolds number, Rer = 
[a\oVdz]/Lv, say; this becomes identical with the usual 
suction Reynold's number when V is a constant. From 
continuity, it follows for this particular problem that 2ira Ĵ  V 
dz = ira2u0 sothatRe r = (a2u0)/2Lv. 

Hence the pressure increase across the m 'th section is given 
by 

4P m - i 8 r, (2/77-1)1 f. 1 

T [ ' - ^ ] [ ' - £ ] ^ * > - (30) 
'Apiio2 n U 2« 

Thus the total dimensional pressure increase from z = 0 to z 
= L along the axis is readily shown to be 

^- 'o . = 4l" l - -L" 
L Re, 

(31) 
Vipu0

2 

irrespective of the number of sections. It should be noted that 
the theory can easily be applied when the sections are not 
equal in length but the results (29), (30), and (31) are modified 
slightly. 

In comparing these expressions with experimental results it 
should be remembered that this theory is based on variable 
suction at the wall whereas the experimental results are for 
constant suction. However (31) follows closely the shape of 
the curve of the experimental results throughout the range of 
Rer and has the c'orrect asymptotic form as Rer — oo. For
mula (31) suggests that the pressure increases for Re, > 1 and 
decreases for Rer < 1. Quaile and Levy observe "according 
to the (inlet region/numerical) theory, the pressure gradient 
increases for Re, > 1.25; adverse pressure gradients we 
observed experimentally for Re,. > 1." Such an exact 
agreement between experimental data and (31) is indeed 
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fortuitous. It is worth noting that as the number of sections n 
increases, the velocity of suction becomes closer and closer to 
being constant although it is essential that the suction 
decreases and increases in any section in the way described 
earlier so that the shape of the parabolic profile is maintained. 
This explains the excellent correlation between the ex
perimental and theoretical results—whereas the similarity 
solutions yield completely different answers for Rer > 2. 
Another feature of the analytic solution is that the axial 
pressure increase across the m 'th section is linear. When n = 
1 the pressure increase is a linear function of z but it is readily 
shown that as n —• oo the pressure increase is a quadratic 
function of z. (Any intermediate number of sections, N say, 
give N line segments of this curve.) The quadratic function of 
z, corresponding to almost constant suction, is precisely the 
shape one expects to obtain for the constant suction inlet 
length (see Quaile and Levy). 

8 Conclusions 

In the introduction it was mentioned that the similarity 
solution for constant suction was often not reached in some 
experiments and that experimenters had concluded that 
sometimes the fluid had a "long memory of the inlet velocity 
profile." In the previous section it has been shown that for 
some suction distributions, the inlet parabolic profile can be 
preserved, even for suction that is almost constant. [For 
injection the arguments of the previous section can be 
repeated with C < 0 and although this yields a doubling of the 
axial velocity profile and a different pressure distribution, the 
inlet parabolic profile can again be preserved for almost 
constant injection]. Now in any experimental apparatus in 
which fluid has to be extracted by a finite number of holes, 
the variable suction distribution in (7) may even by a better 
approximation than constant suction. This observation helps 
to explain why some flows have long memories of the inlet 
profile and the fully developed flow cannot be achieved. 
However experimental results for variable suction would be 
the most useful test of the theories in this paper. For example, 
an experimental study of the solution in Section 7 with a 
suction distribution given by equation (27) would be most 
instructive. 

To obtain a fully developed constant suction profile or a 

fully developed variable suction profile of the type given in 
Section 3, from any given inlet profile, the desirable suction in 
the inlet length is given in Section 4. Indeeed there are many 
possible suction distributions that can achieve this. 
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The Effect of Transverse Curvature 
on the Drag and Vortex Shedding 
of Elongated Bluff Bodies at Low 
Reynolds Number 
This paper establishes the drag characteristics of finite cylinders of aspect ratio 1, 4, 
10 and 100 for Reynolds numbers less than WOO including the viscous regime. The 
effect of the drag and vortex shedding characteristics of curving a finite cylinder 
into a toroidal shape is investigated. The curvature reduces drag by as much as 13 
percent over its linear counterpart in the viscous regime. Vortex shedding 
characteristics of tori include all the features of cylinders in addition to a solidity 
range that behaves like solid bodies and an intermediate range where two vortex 
flow patterns can exist. These patterns can occur either as alternating ring vortices 
or a less common but more stable counterrotating helical vortex pair. 

Introduction 

The problem of determining the drag and understanding the 
flow around bluff bodies at low Reynolds numbers has been 
studied by numerous investigators. The infinite circular 
cylinder and the sphere have received the most attention for 
two reasons; first because of their simple geometrical 
description, and second, because of the wide variety of 
practical applications. Between these two extremes of length 
to diameter ratio (L/c=A) fall an infinite variety of elongated 
bluff bodies. Much less work has been done on determining 
drag of these intermediate families of elongated shapes. 

Consider the drag coefficient of a right circular cylinder 
over the range A~l from zero to one with the major axis 
normal to the flow. We are interested in the viscous, tran
sitional and low subcritical inertial flow regimes. No unified 
solution exists to cover these regimes. The data tend to fall 
between the CD versus Re curves for the sphere and the in
finite cylinder. 

In the viscous regime, the most promising solution is one by 
Batchelor which was empirically improved to fourth order in 
Batchelor's aspect ratio function e by Stalnaker and Hussey 
[1], yielding a drag equation that is valid for A > 20. The latter 
also presented an empirical relation (in Reynolds number) 
which is valid in the transitional regime. 

At a Reynolds number of approximately 44, the drag curves 
for the sphere and the infinite cylinder cross. Above this 
value, the sphere has a lower drag coefficient than an infinite 
cylinder. This suggests that for this family of elongated 
bodies, all have approximately the same drag coefficient 
(1.65) at Re = 44. This drag coincidence Reynolds number 

Contributed by the Fluids Engineering Division of THE AMERICAN SOCIETY OF 
MECHANICAI ENGINEERS at the Winter Annual Meeting, November 15-20, 
1981, Washington, D.C. Manuscript received by the Fluids Engineering 
Division, March 15,1982. Paper No. 81-WA/FE-4. 

matches that where vortex shedding in the wake of bluff 
bodies begins. In the range of Reynolds number from 44 to 
approximately 2000, the author is not aware of any data or 
analysis for the drag of the cylinder family. 

There is currently interest in predicting the drag of 
elongated bodies having curvature in the transverse plane. 
Applications include the biological study of macromolecules 
and micro-organisms, the fluid mechanics of particle 
agglomerates and micelles, and the drag on curved fibers 
found in filter media. 

If our cylinder family is given the smallest constant radius 
of curvature for a given A without overlapping, we end up 
with a family of tori as the limiting geometry. It is the purpose 
of this paper to: 

1. Compare the drag characteristics of this limiting 
geometry with that of its linear counterpart. 

2. To document limited experimental drag characteristics 
for the torus family in the vortex shedding regime and 
to compare the effect on vortex shedding of this 
transverse curvature with that for circular cylinders. 

A recent paper by Amarakoon et al. [2] also provides ex
perimental measurements of the viscous drag of tori and 
provides a detailed study of a number of boundary conditions 
which affect the drag. Portions of the present paper are 
covered in more detail in reference [3]. 

Experimental Equipment 

Test Models. To fill in gaps in the cylinder drag data, four 
cylinders of A = 1,4, 10, and 100 were constructed. The 
cylinder of A = 1 was a composite structure machined from 
half acrylic and half aluminum with the interface along its 
axis to prevent uncontrollable oscillations in the vortex 
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shedding regime. The remaining cylinders were precision cut 
from steel piano wire. 

The bulk of the data for tori is taken from a thesis written 
by the author [4], hereafter referred to as 4. 

A new set of tori was assembled. They were classified 
according to their projected area solidities, S. The following 
solidities were used (compatible with those tested in .4): 1.0, 
0.803, 0.602, 0.395, 0.200, and 0.036. 

The torus of S = 1.0 was machined from acrylic. The next 
three were precision silicone rubber O-rings. The S = 0.2 and 
0.036 tori were formed from brass wire and steel piano wire 
respectively. The joint on the S = 0.2 torus was butt-soldered 
and filed smooth, while that for S = 0.036 had a small 
overlap which was soldered and blended. 

A systematic investigation to determine the drag of curved 
shapes for constant radius of curvature between these ex
tremes was planned by using segments of tori. However, the 
settling experiments of 4 showed that in the viscous regime a 
segment of a torus, e.g., a half torus, assumed a stable at-
tititude with the axis of revolution normal to the flow 
direction (with the C/up); whereas, in the inertial regime, the 
same body fell with the Uin the desired horizontal position. It 
was not practical to fabricate variably weighted segments for 
such a test. This negated a comparison of the broadside 
viscous drag on a segment of a torus with the theories of 
Tschen [5] and Johnson [6]. 

In these tests, drag is inferred from measurements of the 
terminal velocity as they fall through a viscous liquid in a 
cylindrical container. Under these conditions, the drag is 
equal to the difference between the gravitational force and the 
buoyancy force, i.e., the net weight in the fluid. Attempts to 
measure the apparent mass in the test fluids directly on an 
analytical balance as was done by Stalnaker and Hussey [1] 
and Amarakoon et al. [2] were abandoned for the following 
reasons. First, a surface tension force on the single 0.0025 cm 
wire suspending the model caused an unreliable increase in the 
apparent mass reading, especially with water. The net result, 
however was a reduction in the apparent mass readings. 

Test model volumes were calculated by dividing the dif
ference between the mass in air and the apparent value in the 
liquid by the density of the fluid. These values were higher by 
1 to 2 percent than the volumes calculated directly from the 
measured test model dimensions. These discrepancies have 
also been noted in reference [1], however Amarakoon et al. [2] 
have noted both reductions and increases in the apparent mass 
readings compared to subtracting p/Vm from the measured 
particle mass in air. The source of this discrepancy has not 

been satisfactorily explained. Thus, for the present ex
periments the net weight in the fluid was determined from 

W„ = (pm-fif)gVm. (1) 

For the cylinders, Vm was calculated directly from the 
measured dimensions, and pm was determined by dividing the 
measured mass m by Vm. For the tori made from acrylic, 
steel, or brass, pm was derived from the mass and volume of a 
cylindrical sample of the material from which the part was 
made. The value Vm was determined from the ratio mlpm. 
For the silicone rubber O-rings, V,„ was calculated from 
average dimensions determined on an optical comparator and 
p,„ was found from ml Vm. 

The physical parameters of the test models are summarized 
in Table 1. Cylinder dimensions are length L and diameter c, 
while those for tori are given by maximum ring diameter d 
and cross-section diameter c. 

Test Fluids and Containers. Four liquids were used which 
allowed coverage of six orders of magnitude in Reynolds 
number in the range of interest. The lowest viscosity liquid 
was distilled water. The next three of higher viscosity were 
water-soluble polyalkylene glycols made by Union Carbide. 

Viscosities were measured with a Cannon-Fenske 
viscometer which was immersed in a temperature-controlled 
water bath except for the highest viscosity liquid which was 
measured in 4 by means of the falling sphere method. 

Fluid densities were measured with ASTM float 
hydrometers which read sp. gr. to 0.0005 except for the most 
viscous fluid which was measured with a pycnometer in 4. 

Tests were conducted in an environmentally conditioned 
room held at a temperature of 23°C ± 1°C. Temporal fluid 
temperatures were stable within ± 0.5 °C. Fluid spacial 
temperatures were generally within 0.1 °C throughout the 
container. Within the range of interest, the temperature 
dependence of the fluid density and kinematic viscosity can be 
expressed as follows: 

Distilled water: 

UCON50-HB-55: 

p /=1.0039-0.002Tg/cm3 

K = 0.0143-0.0002Tcm2/s 
p / = 0.09655@23.00°Cg/cm3 

c=0.2606-0.0052Tcm2/s 
UCON 50-HB-170: Pf= 1.0722-0.0013Tg/cm3 

i>=1.5910-0.0358Tcm2/s 
UCON 50-HB-5100: pf= 1.0713-0.0009T g/cm3 

^ = 50.469-1.1917Tcm2/s 
where 71s temperature in °C. 

For tests in the two highest viscosity liquids, two container 

N o m e n c l a t u r e 

A = aspect ratio, Lie 
Af = projected frontal area, cm2 

CD = drag coefficient 
D = test cylinder inside dia. or dia, 

cm 
Kb = boundary correction factor to 

&mg,Kb=Kb(\) 
Kv, = dynamic shape factor 

L = major axis length (mean 
circum. for torus), cm 

R - drag, (g cm/s2) 
Re, = Reynolds number based on 

i = c,ds,dorL 
S = projected area solidity [4(1 -

c/d)c/d] 
T = temperature, °C 
U = velocity, cm/s 
V = volume, cm3 

W„ 

c 
d 

net weight in fluid, g cm/s2 

half length of rectangular 
container, cm 
minor axis length, cm 
outside diameter of torus or 
diameter, cm 

g = acceleration of gravity (980.57 
cm/s2 , local value) 

h = half width of rectangular 
container, cm 

m = mass, g 
a = a(A) 
i8 = constant 
7 = Euler's const (0.577216) 
e = IM2A)]-' 
X = boundary proximity param

eter, ds/D 
X' = boundary proximity param

eter, d/D 

M 
V 

p 
aca, 

= dynamic viscosity, g/cm s 
= kinematic viscosity, cm2/s 
= density, g/cm3 

= ratio of ellipsoid aspect ratio 
to that of a cylinder or torus 
of equal drag 

Subscripts 
c 
e 

f 
h 

m 
0 

5 

/ 
V 

00 

= cylinder 
= ellipsoid of equal drag 
= fluid 
= hydraulic diameter 
= test model 
= infinite A cylinder in infinite 

fluid 
= sphere of equal volume 
= torus 
= viscous regime 
= infinite fluid 
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Table 1 Physical parameters 

Cylinders 

Tori 

L/c 

1.002 
4.000 
9.998 

100.078 

S 

1.000 
0.803 
0.602 
0.395 
0.200 
0.036 

L 

(cm) 

0.3167 
0.6401 
1.1938 
8.1864 

d 

0.5065 
0.6348 
0.9524 
1.5776 
1.5403 
4.194 

c 
(cm) 

0.3160 
0.1600 
0.1194 
0.0818 

c 

0.2533 
0.1751 
0.1740 
0.1765 
0.0817 
0.0381 

m 

(g) 

0.0496 
0.1006 
0.1039 
0.3381 

m 

0.0483 
0.0514 
0.0843 
0.1582 
0.2045 
0.1182 

vm 
(cm3) 

0.0248 
0.0129 
0.0134 
0.0430 

Vm 

0.0409 
0.0348 
0.0582 
0.1077 
0.0238 
0.0151 

Pm 
(g/c-
m3) 

1.999 
7.822 
7.781 
7.863 

Pm 
1.182 
1.477 
1.499 
1.469 
8.579 
7.848 

Results of 
Tests in Water 

Re CD 

232 0.72 
242 0.75 
204 0.99 
199 1.13 
244 1.27 
71.3 1.32 

diameters were used with diameters of 29.253 cm and 14.00 
cm, respectively. This allowed extrapolation to zero dJD ( = 
X), the infinite fluid condition. Here, ds is the equivalent 
spherical diameter of the particle, and D is the tube inside 
diameter. 

The large tube was sized so that X was about 0.01 for most 
test models. Since boundary effects become much less severe 
at higher Reynolds numbers, tests in the two lowest viscosity 
liquids were done only in the largest tube. The maximum area 
blockage of the present models was less than 0.001. Liquid 
column heights were 102 cm for the three lowest viscosity tests 
and 71 cm for the highest viscosity tests. 

Apparatus and Procedure. Settling velocities were 
measured by the time of flight between two laser beams as 
described in Stalnaker and Hussey [1]. 

The main differences in the method are as follows. The 2 
mw He-Ne laser beam was introduced into a TSI Model 915-2 
beam splitter which produced two parallel beams nominally 
50 mm apart. These beams were aligned to the tube center line 
and leveled by adjusting the reflected beam from the opposite 
side of the tube to coincide with the incident beam. 

The beams were intercepted by two photocells (United 
Detector PIN 10 DP). Acceptable beam attenuation was 
achieved with white paper diffusers in front of the diodes. The 
signals from the photocells were fed to a crystal-based, two-
channel event timer (Hewlett-Packard 5315A). For a given 
sensitivity setting, the beam spacing, as indicated by the 
trigger lights on the timer, was measured by moving the tail of 
a vernier micrometer mounted on the side of the tube through 
the two beams. The beam spacing was equal on both sides of 
the tube to within 0.0025 cm. 

The beams were located approximately 40 cm above the 
bottom of the container. This provided sufficient acceleration 
length above for the high Reynolds number tests and suf
ficient distance between the top and bottom boundaries to 
produce a negligible effect on the settling velocity. 

Solutions to many operational problems too numerous to 
mention here were all overcome. These include problems with 
bubbles on the models, tilting of the models in the viscous 
regime, launch techniques, hitting the beam with the small 
models, gliding, and oscillations of the cylindrical test models 
in the vortex shedding regime. The later problem was not 
overcome for the aspect ratio 4 and 10 cylinders. They 
oscillated about their minor axis but did not drift sub
stantially. In some cases, the solution was to practice. 

Data Reduction 

Viscous Regime. In the viscous or Stokes regime, it is 
convenient to work with the dynamic shape factor defined as 
Ka, = U^IUS, where U„ is the settling velocity of an ar
bitrary finite particle in an infinite fluid. Us is the settling 

velocity of a sphere of equal drag and volume in an infinite 
fluid. K„ depends only on particle shape. 

When boundaries are present, the arbitrary particle takes 
on a new velocity U. The ratio of this value to that which the 
particle has in an infinite fluid is known as the boundary 
correction factor Kb = U/U„. 

With these definitions, the drag R,„ on an arbitrary particle 
in the Stokes regime is given by 

R„, — 
3 7T IxU ds 

(2) 

where ds is the diameter of a sphere of equal volume to that of 
the particle and p. is the fluid viscosity. 

Brenner [7] derived a general first-order theory for Kb 

which for cylindrical containers is 

Kh = \ 
2.1044 

X- (X< < I) (3) 

This equation shows that Kb depends on the shape of the 
particle via Km, the shape of the container (2.1044 for 
cylinders), and the proximity of the container walls via X. 
Brenner specifically mentioned that this form is more accurate 
than a less general form 

r 2.1044 I - ' 
Kb=\\ + ——\ . (3a) 

For all possible geometries under consideration, the full range 
that the parameters X, Ka, and Kb can take is 0 < X, K„, Kb 

< 1. 
For terminal velocity conditions, the net weight given by 

equation (1) is equal to the drag Rm of equation (2). Com
bining these results in a relation for the product K^Kb in 
terms of experimentally-measurable variables, i.e., 

{KxKb) exp — • 
3 ir fi Uds 

(4) 
(Pm~Pf)S Vm 

One method of extracting K„, from data of this type is to 
plot (A'ooA'j,),.̂  against several values of X and extrapolate the 
curve back to zero X. Under this condition as X — 0, U-~ £/„, 
therefore Kb —• 1, and thus (KxKb) -~ Kx. The accuracy of 
this procedure depends in part on how close the smallest value 
of X is to zero. In the present derivation ds is the characteristic 
model dimension. Amarakoon et al. [2] chose d for the 
characteristic dimension of tori and of course the choice is 
arbitrary, however they have shown that the drag can be 
substantially affected if X ' = d/D is large even though ds/D 
may be small. Thus, for best accuracy in obtaining K„ by 
extrapolation we must require that 

X < X ' < < 1 (5) 

for the smallest values tested. Amarakoon et al. [2] em
pirically derived a boundary correction factor for tori which is 
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of the form of equation (3a) but contains terms involving X' 
and aspect ratio A rather than X and Km. 

For cylindrical models one must also require LID < < 1 
although the requirement isn' t as critical as it is for the torus . 
When this condition is violated, Stalnaker and Hussey [1] 
derived an approximate empirical correction to the drag on a 
cylinder due to endwall boundaries in a rectangular container. 
Although the " e n d w a l l " correction for a cylindrical container 
does not exist, one might as a first order approximation use 
the Stalnaker and Hussey relation for the case of a square 
container. Under this condition, their equation (25) becomes 
for the present nomenclature 

0.01 \(D,,/L)V' 

* * " 1 _ (Dh/L)-l ' ( 6 ) 

where Kbe represents the endwall boundary correction factor 
and Dh is the hydraulic diameter of the square and is taken to 
be approximately equal to the diameter of a cylindrical 
container D. 

If Brenner 's theory is valid, we can also predict K„ from 
(K„ ^T6)exp and Kb given by equation (3) as follows 

Ka 

(Ka>Kb ) 
(7) 

Kb 1-(2.1044/A:O C)X 

Solving for K«, results in 

Ka, = (KaKb)exp +2.1044 X. (8) 

Brenner's theory will be compared to the extensive data for 
tori over a wide range of particle elongation (decreasing S). 

Inertial Regime. If during the model tests the Reynolds 
number is not sufficiently small, K„ may contain some 
inertial terms that cannot be neglected. Chwang and Wu [8] 
have shown that for elongated bodies (spheroids) two 
Reynolds numbers are relevant. One based on the minor axis 
and one based on the major axis length. For other elongated 
bodies such as the torus, one may presume that the maximum 
dimension of the body may be an appropriate characteristic 
dimension. Thus, to ensure a viscous,or Stokes result for the 
drag on tori or cylinders we require that 

Re c < Red , R e d , R e i < < l (9) 

for the lowest values tested. Reynolds number is given as the 
product of U/v and any one of the characteristic dimensions 
c, ds, d, or L. 

A general first order drag theory for arbitrary particle 
shapes in the Oseen regime has been developed by Brenner [9]. 
Amarakoon et al. [2] tentatively used this relation to correct 
Oseen drag on a torus to the Stokes drag. This correction will 
be evaluated for the present test models. 

For the unbounded fluid, equation (2) becomes 

Rm — 
3 ~K\)XJ „ ds 

(10) 

In terms of this definition for the drag, Brenner 's relation can 
be written as 

K«.„ 3 Rerf 

= 1 + — ^ - 5 - , (11) 
Ka 16 Ka 

where the v subscript represents the Stokes condition. Solving 
for K„ yields the viscous regime shape factor. Brenner 
mentioned that this result can be deduced from any of the 
known solutions of the Oseen equation. The recent first order 
solution for the Oseen drag on the prolate spheroid family by 
Chwang and Wu [8] can also be used to deduce equation (11). 
This includes the case where R e L / R e c = A is large but 
Re L < < 1 . Note that the Reynolds number in equation (11) 
can be expressed in terms of any other characteristic 
dimension since 

ds ds 
R6rf* = ~d T ~ R C i ' etC' 

It should be noted that equation (11) gives an overestimate of 
the inertial correction since Brenner and Cox [10] have shown 
that the second order term is negative for Re L < 1. This was 
pointed out by Amarakoon et al. [2]. 

For the case of a finite cylinder, Stalnaker and Hussey [1] 
have given the following empirical relation between the Stokes 
and Oseen shape factors 

K« 

= 1 +0.062(,4 Re c) ' ' (12) 

This correction will be compared with that of equation (11), 
where appropria te , for cylinders. 

The presence of boundaries has diminishing importance as 
Reynolds number is increased. For the Oseen or transitional 
regime, Stalnaker and Hussey [1] developed an empirical 
relation for the boundary correction to the drag on finite 
cylinders falling within rectangular containers. The width is 
Ih and the length is 2b (parallel to the major axis of the 
cylinder). In terms of Kb and K„, it becomes 

^ = I -£(T)( ! ) ' (i3) 

where for cylinders and tori 

ds=c(iAy (14) 

and B is a slope parameter defined in Fig. 10 of reference [1]. 
When considering a square container, such that 2h = 2b and 
expressing the width in terms of the hydraulic diameter Dh of 
the container, the following relation is obtained 

2h = 
Dh (15) 

r 2/i i 
2[^^\=Dh=D. 

The last equality is valid since the hydraulic diameter of a 
circle and a square are the same. 

If equation (15) is substituted into equation (13) which in 
turn is combined with the first par t of equation (7) we obtain 

Ka = (KaKb)exp+^-B\. (16) 

Stalnaker and Hussey obtained 

and 

5 = 0.886 

5 s 2 . 6 6 R e L - ' 

for Re, < 3 

fo rRe L >3 . 

(17a) 

(176) 

The latter relation is based on cylinder data taken by Huner 
(see Fig. 10 of reference 1). 

At high Reynolds numbers shapes having equal hydraulic 
diameters usually yield similar results, however for the Stokes 
regime Happle and Bart [11] have shown approximately a 10 
percent reduction in the container shape constant of equation 
(3) when the container is changed from a cylinder to a square 
container whose sides are equal to the cylinder diameter, i .e., 
equal hydraulic diameter. The present test results using 
U C O N 50-HB-170 will be compared to the results of 
equations (17) which cover a similar range of Reynolds 
number . 

In the inertial regime, it is more conventional to use the 
drag coefficient CD rather than a shape factor. The following 
relations express the drag coefficient in terms of ex
perimentally measurable quantities for the terminal velocity 
condition as well as its relation to shape factor 

Cn = 
W„ 6ircd, 21.5773 

0.5PUlAr K^RecAf K^Re, 
(18) 
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Fig. 1 The effect of boundaries on shape factor for tori and finite 
cylinders 

Here, Aj is the projected frontal area of the body. The second 
expression is general. The third relation was obtained using 
equation (14) and Aj — c2A. It applies to tori and cylinders. 

Drag coefficients derived from the tests in UCON 50-HB-55 
and water were not corrected for blockage due to the 
negligible magnitude and sufficiently high Reynolds numbers. 
The basis for this is discussed in Roos and Willmarth [12]. 

Statement of Experimental Uncertainty. The uncertainty 
estimate of the experimentally derived parameter K„Kb is ± 
1.4 percent, and for X, ± 0.2 percent. It is believed that there 
is a systematic error in K„Kb on the order of 4 to 5 percent 
maximum in some of the small tube tests and 1 to 2 percent 
maximum in some of the large tube data. The reason was 
occasional excessive exposure of the fluid to the laser beam. 
The resultant heating created a sheet of lower viscosity fluid 
above the beams and some general heating of the fluid, which 
was dependent on the mass of fluid in the tube. The effect 
would be to cause higher settling velocities for the less 
elongated test models and those in the small tube. 

The estimated uncertainty of CD and Re are ± 3 percent 
and ± 1.5 percent, respectively. Variation in the velocity 
measurement (an average of three for each data point) is the 
largest contributor to the uncertainty in all parameters in
volving velocity. 

Results and Discussion 

Viscous Regime. The values of (K„Kb) exp for cylinders 
and tori, including data from 4, are shown in Fig. 1. The slope 
of the data for tori of S 5. 0.395 for the most part supports 
that predicted by Brenner's general boundary correction 
theory, equation (8). For these data, we obtained Red < 0.01 
and X' < 0.05 for the smallest values of X tested and Red = 
0.034 and X' = 0.315 for the largest X tested. The inertial 
correction, equation (11), was applied using Red at the 
smallest values of X tested. For this group it did not exceed 0.2 
percent and thus was neglected. For each value of solidity, 
Kx was determined for each X using equation (8) and then 
averaged. 

For the S = 0.2 and the S = 0.036 tori the data reduction 
was done two ways. In the extrapolation method shown in 
Fig. 1, a curve was drawn through the data points which was 
made to match Brenner's slope at X = 0. Then inertial effects 
were accounted for by using equation (11) at the smallest test 
X to obtain K„ . 

The second method used the more elaborate empirical 
boundary correction relation developed by Amarakoon et al. 
[2]. First, equation (11) was assumed to apply at each X' to 
correct {K„,Kb)txv to (KxKb) „'. 

Then the Amarakoon et al. relation was used to correct 
(K„Kb) v to K„ . It can be expressed as 

K^ = (KmKb)u\ 1 + )„[l 
2.09\'(l+s0)s0-°-

l+s0 — ir\'^/s0 
' ] • (19) 

where s0 = AI ir. The resulting Ka were averaged. 
These results are compared to the exact theory of 

Majumdar and O'Neill [15] for the open torus (S<1.0) and 
Dorrepaal et al. [16] who first solved for the viscous drag on 
the closed torus (S = 1.0). The exact theory has been evaluated 
over a wide range of aspect ratio by Goren and O'Neill [17]. 
Figure 2 shows the results for cylinders and tori. The torus 
data is plotted against solidity for convenience. 

For S<0.395, there was no advantage of the method two 
correction scheme over Brenner's relation for the range of X 
tested. For 5 = 0.200, the extrapolation scheme using Bren
ner's slope at X = 0 yielded a K„ 1.6 percent higher than the 
exact theory while method two predicted 2.3 percent low for 
the present data. For S = 0.036, the extrapolation method 
predicted 3 percent below the exact theory. This point was 
erroneously stated to be 6.1 percent low in reference [3] due to 
an error in estimating the exact theory. Herein the exact 
theory values were obtained by linear interpolation of the 
values given in reference [17]. The second method experiences 
trouble when the X = 0.057 data point was included in the 

This is an approximation. McNown et al. [13] have shown that for spheres, 
transition to the inertial regime is delayed to higher Reynolds number when \ is 
not zero. McNown and Malaika [14] have suggested that the results for spheres 
can be applied, approximately, to other shapes if the square root of the 
projected area of the particle is substituted for ds in the definition of X. 
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average. As seen in Fig. 1, this data point appears to be ex
cessively large. In addition, Red was 0.803 which may be out 
of bounds for the first order inertial correction term, equation 
(11). Using only the two lowest X data points, method two 
predicted a K„ 2.7 percent below the exact theory. 

Applying Brenner's relation to the torus data of 
Amarakoon et al. [2] showed that it fit well for the high to 
medium solidity data as long as X' was less than 0.1 to 0.2 
depending upon solidity. At the lowest value of solidity, the 
slope of the curve predicted by Brenner's theory did not match 
the empirical relation of Amarakoon et al. It should be noted 
that for low solidity tori there is insufficient data below X' = 
0.1 to support either the Amarakoon et al. or the Brenner 
relation. The average normalized error between the six data 
points and the exact theory is 0.998 with a normalized 
standard deviation of ± 0.015. 

The exact theory is difficult to use because of the complex 
mathematical relations involved. A closed-form relation for 
the drag on a torus of low solidity was obtained by Tchen [5] 
and later by Johnson and Wu [18]. It can be written as 

* - - ( y ) ""- [* (") • 71- ™ 
This relation fits the exact theory within 0.5 percent for 
S<0.3 as shown in Fig. 2. Note that for tori, aspect ratio is 
related to solidity by 

2 
A = T[ , 1 • (21) 

Another approximation can be made by a modification of 
ellipsoid theory. The viscous drag for transverse flow past a 
prolate spheroid can be expressed in terms of shape factor as 
follows 

(2,42-3)arccosh,4e Ae 
K~ — (22) 

( ^ - 1 ) 3 / 2 

This relation is due to Oberbeck (1876), see e.g., Chwang and 
Wu [8]. Here we have written Ae rather than A for reasons 
that will now be explained. It seemed that for any torus 
having aspect ratio A, one could find a spheroid of some 
other aspect ratio Ae that would have the same drag as the 
torus. Thus, if Ae was the aspect ratio of a spheroid of equal 
drag to that of a torus of aspect ratio A, there is some func
tion a, = a,(A), where 

Ae = a,A. (23) 

It was found that a, could be expressed empirically by 

a, =0.774 exp[-0.4692A4f]> (24a) 

where 

f=0.3236 + 51.41/4-3 4 2 4 . (24ft) 

This relation matches the exact theory within 0.5 percent for 
all values of S. 

For the cylinder data of Fig. 1, the suspected systematic 
error in the small tube data for cylinders of A = 1 and 4 is 
apparent. The large tube data were thought to be more 
reliable for these models. Therefore, Brenner's theory was 
applied only to the large tube data for these test cylinders. The 
same method was applied to the A = 10 cylinder even though 
the slope (-1.25) did not match that predicted by Brenner's 
relation. With only two values of X quite close together, the 
slope is rather sensitive to experimental error in the measured 
values of (KxKb). The average K„, using equation (8), was 
then corrected for inertial effects using equation (11). For all 
of the above data points, the inertial correction did not exceed 
0.3 percent and the "endwall" correction, equation (6), was 
less than 0.1 percent. 

The 4̂ = 100 cylinder data was reduced using the ex
trapolation method as illustrated in Fig. 1 and then corrected 

for inertial and endwall effects as previously described. These 
corrections increased K„ by 0.95 percent and 0.6 percent, 
respectively. 

The data for cylinders are also shown in Fig. 2 along with 
some other data for low aspect ratio cylinders found in the 
literature; Heiss and Coull [19] tested cylinders of A = 1, 2, 3, 
and 4. The latter was also tested by McNown and Maliaka 
[14], The exact theory of Batchelor [20], valid for la rger , and 
a numerical solution by Russel et al. [21], also valid for large 
A, have been combined into a single expression by Stalnaker 
and Hussey [1]. It can be written as 

where 

[e-0.193e2 +0.215 e3 +0.97 e4]" 

• [In (2,4)] 

(25) 

(26) 

Terms through e3 represent the Batchelor solution, while the 
entire relation represents the Russel numerical solution. This 
function was verified by Stalnaker and Hussey [1] and by 
others for aspect ratios A > 20. These functions are plotted in 
Fig. 2. The tic mark indicates the upper limit of validity for 
A " ' according to Stalnaker and Hussey [1]. 

The present data for A = 10 and 100 falls 3.1 percent and 
1.3 percent above the Batchelor theory, respectively. If we 
had used equation (12) rather than equation (11) for the 
inertial correction, the above discrepancies would increase by 
an additional 1.0 percent and 1.9 percent, respectively. 

By a second method, if we simply use the slope determined 
by the two values of X, to find the zero X intercept Km then 
correct for endwall effect and the equation (11) inertial effect, 
the resulting K„ for the above mentioned A fall 1.7 percent 
above and 2.5 percent below the Batchelor theory, respec
tively. Using the second method in combination with the 
equation (12) inertial correction results in Kx 2.5 percent 
above and 0.7 percent below the Batchelor theory for the same 
respective A. Considering the previously mentioned sensitivity 
of the slope to experimental error, the second method is 
thought to be less reliable for the present data which covers 
only two values of X. 

The Stalnaker-Hussey empirical inertial correction, 
equation (12), predicts a considerably higher inertial effect 
than Brenner's relation, equation (11). The former appears to 
be based on a curve fit to data having considerable scatter. 
This relation will be discussed further in the inertial section. 

When one considers the whole regime of A, and the ad
ditional data plotted for small A, it seems that the original 
Batchelor relation fits the data over a wider range than does 
the Russel relation. Both relations fail at lower aspect ratios, 
however. 

We desire a relation that covers the whole range of A. This 
was accomplished by again using a modification of the 
ellipsoid relation, equation (22). For cylinders the aspect ratio 
Ae of a spheroid of equal drag to that of the cylinder of aspect 
ratio A is given by 

A„ = arA. (27) 

Using the exact theory of Batchelor, where applicable, and a 
smooth curve through the data for the low aspect ratio range, 
the following relation was found for ac, 

ac =0.835 exp[0.527/4-°-69]. (28) 

The set of equations (22), (27), and (28) are plotted in Fig. 2 
and denoted as modified ellipsoid theory. At large A, this 
relation fits the Batchelor exact theory for cylinders within 0.5 
percent. It provides a good mean curve through the data at 
low A. Most of the data falls within ± 2 percent of this curve, 
thus it is felt that this may predict within 2 percent or better 
for the full range of A. 
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At low aspect ratios, prolate spheroids of the same A as 
that of a cylinder have less drag (higher K„). At large aspect 
ratios, where we are comparing the drag predicted by two 
exact theories, a prolate spheroid of the same aspect ratio as a 
cylinder has higher drag (lower K^) than the cylinder. For 
equal drag it must have an aspect ratio 83.5 percent as large as 
the cylinder. All but 5 percent of this discrepancy can be 
accounted for if the average diameter cw/4 is taken as the 
characteristic diameter rather than the minor diameter c. 

We are now ready to examine the effect of transverse 
curvature on the drag of elongated particles. This is presented 
in Fig. 3 as a ratio of K„ for any curved particle to that of a 
cylinder of the same aspect ratio, K,* . The curve shown is for 
the exact torus theory, and the abscissa represents the cylinder 
given by equations (22), (27), and (28). Drag curves for 
segments of a torus will fall between these boundaries. The 
theory of Tchen [5] was evaluated for segments of a torus and 
it was found to predict a rather rapid increase in drag 
(decreasing K„ ) as the torus was opened up. However 
Tchen's geometry did not maintain a constant cross sectional 

1.2 

1.0 
o.oi 

TT 
1.0 

Fig. 3 Effect of transverse constant radius of curvature on shape 
factor of finite elongated bodies. 

1000 -

Doo 

diameter during this process but rather changed steadily to a 
prolate spheroid in the limit rather than a cylinder. Since we 
have shown that a spheroid of the same aspect ratio as that of 
a cylinder has higher drag, it is not clear what fraction of 
Tchen's drag change is due to change in shape and what 
fraction is due to changing the curvature of the torus. One can 
see in Fig. 3 that the maximum correction to shape factor due 
to transverse curvature is 15.1 percent at A ~1 = 0.09. 

Inertial Regime 

Cylinders. In Fig. 1 we show a typical result for the 
cylinders tested in UCON 50-HB-170, A = 10, Rec = 2.2. 
These tests covered a Reynolds number range 0.004 < ReL < 
99. This was stated incorrectly in reference [3] due to 
mistaking Rec for ReL. The boundary effects were found to 
be weaker at the higher Reynolds numbers, however the slope 
which was obtained by connecting the data points at the two 
values of X described previously gave quite different results 
than the values expressed by Stalnaker and Hussey in the form 
of equations (17). For the present data we obtained that B = 
3.55 ReL-°-54 for ReL > 6; at ReL = 2.9, B = 1.37, which is 
in substantial agreement with de Mestre's result of 1.337 (see 
Fig. 10 of reference [1]); as Reynolds number further 
decreased, B continued to increase toward the value of 2.8059 
predicted by Brenner's theory. These slope results must be 
regarded as preliminary, keeping in mind the sensitivity of the 
slope to experimental error in KxKb as discussed previously. 
The intercept values of K„ at X = 0 were converted to CD by 
means of equation (18) as was the data for the other fluids. 

The drag results for cylinders are shown in Fig. 4 plotted 
two ways. In Fig. 4(a), the data are presented as the con
ventional drag coefficient as a function of Reynolds number 
for the various aspect ratios. Curves drawn through the data 
show the crossing-over effect around Rec = 44, as discussed 
in the introduction. 

Supporting data or interpolations from data is shown where 
available. This includes data from Heise and Coull [19], 
McNown and Malaika [14], and Huner and Hussey [22]. 
These data support the present results within a few percent. 
The curves stop at a Reynolds number of about 1000 for lack 
of data. They must join another set of curves based on the 
drag coefficients taken at high Reynolds numbers. An ap
proximate relation for the drag curves shown in Fig. 4(a) for 
Reynolds numbers greater than 5000 was given in reference 
[31. 

la) 

10,000 

Re 

Fig. 4(a) Variation of the drag coefficient with Reynolds number for 
selected cylinder aspect ratios; (b) Variation of [ ( C D / C D ) - 1 ] „ with 
Reynolds number for the cylinder data of Fig. 4(a) 
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Actually, the curves drawn through the data in the con
ventional plot, Fig. 4(a), could not have been drawn through 
the present limited set of data were it not for the curves of Fig. 
4(6). 

In this inset, we have plotted the parameter [CD/CDv - 1]«, 
against Reynolds number for the four aspect ratio cylinders 
that were tested. CDv is the Stokes drag coefficient at. the same 
Reynolds number. On this type of plot, the curves are nearly 
linear and can be fit by an average curve of the form 

[C o /C f l „- l ] 0 O =aRe c ^ . (29) 

The slopes are all the same, /3 = 0.779, and the intercepts can 
be read at the intersection of the curves with the ordinate 
passing through Rec = 1.0, Fig. 4(b). There is a hint in the fit 
of these curves to the data near Rec = 40 that there may be 
subtle shifts in the slope and drag of the type described by 
Pruppacher et al. [23], but there is an insufficient quantity of 
precise data to discern these details. Roos and Wilmarth [12] 
noted that oscillating discs in free fall had higher drag 
coefficients than those that were held rigidly. The oscillations 
of the A = 4 and 10 cylinders did not seem to significantly 
affect the drag data since the data fit the relation of equation 
(29). The value a as found to follow the relation 

a = 0.114v^4. (v4<13) (30) 

At aspect ratios greater than 13, there is a significant 
departure from this relation. The line through the A = 100 
data is the only data point above A = 13 for the present tests, 
thus there is insufficient data to predict the drag charac
teristics for larger aspect ratio cylinders. Examination of the 
data on finite length cylinders by Tritton [24] over the range 
150 < A < 876 had too much scatter and an insufficient 
range of Reynolds number to resolve the issue. 

At Reynolds numbers below 1.0, the empirical relation of 
Stalnaker and Hussey, equation (12), predicts a different 
relation when converted to the form of equation (29), with a 
= 0.062 VA and /3 = 0.5. These relations are valid for Rec < 
10A4 and, presumably 19.6 < A < 388, the range of their test 
parameters. The general theory of Brenner and Cox [10], 
given by equation (11) to first order, can be written in terms of 
equation (29) by making use of equations (14) and (18) with 
the result 

3 / 3 \'A 

[CD/CDv-l]0, = -(KjA) Rtc/K„vc 

+ 0[Re / lnReJ , (31) 

where K^vc for cylinders is given by equations (22), (27), and 
(28). 

The present relation with /3 = 0.779 and the measured a or 
the relation of equation (30), in addition to fitting the data 
well at higher Reynolds numbers, is in much closer agreement 
with equation (31) than is the Stalnaker-Hussey relation for 
Reynolds numbers less than 1.0. 

The exact nature of transition as aspect ratio is increased is 
still lacking unified relations up to large Reynolds number, 
however, equation (31) and the analysis of Chwang and Wu 
[8] for ellipsoids give some ideas about the beginnings of 
transition to first order in Reynolds number. Equation (31) 
shows that a follows some function of A and that /3 is a 
function of Reynolds number. At low values of Reynolds 
number equation (31) suggests (3—1.0. At high values 
Pruppacher et al. have shown that (3 can shift abruptly as flow 
patterns change as a function of Reynolds number. 

Prior to this investigation, this author had the impression 
that the drag coefficient curves for elongated bodies would 
blend or coalesce with the drag curve for an infinite cylinder 
as Reynolds number increased. For example, the ellipsoid 
equations of Shi [25] which are valid for large A show all the 
drag coefficient curves for various aspect ratio ellipsoids 

converging to a single curve as Reynolds number increases. In 
another example, the average drag curve drawn by Tritton 
[24] through data for large but finite aspect ratio cylinders is 
often averaged in with similar data from other investigators. 
These results are then used to represent the drag coefficient 
curve for infinite aspect ratio cylinders. Others such as Huner 
[22], take data in a narrow Reynolds number range and 
develop empirical relations as a function of A which allow one 
to extrapolate to the inifinte aspect ratio case. Huner's 
correction to the drag coefficient for infinite aspect ratio was 
based on data from cylinders of 10 < A < 50. Stalnaker and 
Hussey [1] suggest that the Huner relation may be valid from 
0.0079 < Rec < 2.5 

With the present curve for A = 100 in Fig. 4(a), one would 
have some difficulty utilizing the Huner relation to predict the 
infinite cylinder drag coefficient from the data at Re = 1.0. 
The transition curve (defined by equation (29) with a = 
0.825, /? = 0.779) goes below the ̂ 4 = oo drag curve. Thus, a 
different relation would be needed for this case. The func
tional form of Huner's relation would need a negative sign in 
front of his aspect ratio function rather than a positive value 
(equation (24) of reference [1]). 

The reference drag coefficient curve for infinite cylinders is 
useful in its own right for many studies. Presently, its 
representation is a collection of theories, curve fits and data 
sets for various ranges of Reynolds number. Using selected 
data and theory described in reference [3], the following curve 
fit resulted, which is valid for Rec < 1000: 

8TT 
Cm = 5— ee, (32a) 

Kec 

where 

[ 1 Re 1 ~ * 

— - 7 - In Y +/i (Re<) +f2(^c) J (326) 
/ , (Rec) = 0.30851 Re°-17834 (32c) 

/2(Re c) =[9.12640Re^°'45°605 -0.83139-0.00245 Re? 2 5]" 1 . 

(32d) 

The error is < 0.7 percent for Rec < 0.1, < 0.8 percent for 
0.1 < Rec < 2.5, and < 2.0 percent for 2.5 < Rec < 1000, 
except for a small region around Rec = 4 where the error is 
+ 4.5 percent. The 5 place precision is necessary around Rec 

= 1000. 

Tori. The limited drag coefficient measurements made for 
tori of solidity 0.036 < S < 1 in the Reynolds number range 
70 < Rec < 270 are given in Table 1 to avoid confusion in 
adding the data to the many curves of Fig. -4(a). When these 
data are plotted in Fig. 4(a), we find that the trends are similar 
to the trends for cylinders of the same aspect ratio. 

For the data of S = 1, 0.803, and 0.602, one can compare 
the measured torus drag coefficient with that of a cylinder of 
the same A by means of equations (18), (22), (27), (28), (29), 
and (30). The solidities are related to A by means of equation 
(21). The results are CDtorus/CDcylinder = 0.93, 0.87, and 0.99, 
respectively. Thus, these tori are running up to 13 percent 
lower than a cylinder of the same A with considerable scatter 
in the data evident. The cylinder data is not well enough 
defined to make a comparison with the lower solidity torus 
data. 

A tentative conclusion for this section (pending more data 
at large A) is that the transition curves {CD versus Rec) for 
elongated bodies of finite aspect ratio follow curves of the 
general form given by equation (29). 

Subtle shifts in the slope with increasing Reynolds numbers 
when encountering new flow patterns are anticipated. These 
transition curves fall close to the curve for an infinite cylinder 
but are not necessarily related. They do not coalesce with the 
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infinite cylinder drag curve with increasing Reynolds number;
but, each constant aspect ratio curve crosses the infinite
cylinder curve and goes below it at a particular Reynolds
number.

Vortex Shedding Regime-Tori. The results of this section
are a brief summary of the more extensive systematic flow
visualization studies done in 4. The effect of transverse
curvature on the vortex shedding characteristics of the torus
family of shapes was studied by means of flow visualization
using falling bodies dipped in a dye solution. Reynolds
number was varied by mixing various combinations of water
and glycerine. Figures 5 through 10 show the results of
visualizations for seven decreasing solidities from 1 to 0.036.
For each case, visualizations of several progressively in
creasing Reynolds numbers are shown.

Three general flow regimes are classified according to the
solidity S of the torus as follows:

1. In the high solidity range, 0.45 <:: S <:: 1, tori behave
similar to solid bodies, producing rows of oblique vortex
loops which change, at a given Reynolds number, to regular
but distorted rows of counterrotating ring vortices. This is
accompanied by a sudden increase in the Strouhal number.
This change can be seen in Figs. 7(b) and (c), respectively.
Roshko [27] correctly speculated on this phenomenon based
entirely on wake frequency measurements using a hot wire

316/VoI.105, SEPTEMBER 1983

anemometer. Takamoto and Izumi [28] recently reported
observing the counterrotating ring wake behind a flat annular
washer of solidity S = 0.556, but did not report observing the
oblique loop wake.

These results suggest that there may be three subcategories
of wake patterns within this general solidity range; a solidity
range (say> 0.7) where only the oblique loop wake exists, a
range 0.55 < S < 0.7 where either the oblique loop or the
counterrotating ring wake can exist depending on Reynolds
number (some hysteresis has been noted in this critical
Reynolds number), and a range 0.45 < S < 0.55 where only
the counterrotating ring wake exists. It can be seen that higher
Reynolds numbers produce periodic turbulent "puffs" in the
wake. Refer to Figs. 5-7.

2. In the medium solidity range, 0.15 < S < 0.45, two
possible vortex patterns exist: one consists of rows of
counterrotating ring vortex pairs; the second is a surprising
pattern which appears at random, namely, a counterrotating
helical vortex pair. With increasing Reynolds numbers, three
dimensional circumferential disturbances become more
predominant and the wake pattern gradually reduces to
periodic turbulent annular puffs. Refer to Figs. 8 and 9.

Studies of the helix angle as a function of Reynolds number
in 4 for the helical wake mode show a decreasing angle
(measured perpendicular to the axis of revolution) with in
creasing Reynolds number. Apparently when the Reynolds
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number exceeds some critical value (or range of values), the
helix angle becomes too low for the helical mode to exist and
the system reverts to the ring wake mode. One of the annular
bodies visualized in 4 was caught in the act of switching from
one mode to the other.

The flow past a torus is not unlike the flow from a thick lip
nozzle with an external flow superimposed. Axisymmetric and

(d) Rec 405

Fig.9 Tori S = 0.200

helical modes and the switching phenomenon have been
observed in both low and high Reynolds number turbulent jets
with no external flow field. This phenomenon is currently
under investigation as it pertains to jet noise, see, e.g., Hardin
[29]. The isolated jet produces a much larger helix angle in the
helical mode than does the torus at low Reynolds number.
This suggests that the helical wake of the torus may reappear
with somewhat different characteristics at higher Reynolds
numbers than were tested herein depending on the relative
stability of the modes and whether or not the flow field is
perturbed by external sources.

3. In the low solidity range, 0 < 5 < 0.15, only the ring
vortex street is observed. Refer to Fig. 10. As solidity is
decreased toward zero, the vortex shedding characteristics
steadily approach those observed for the infinite cylinder.

Reference [3] contains a more detailed discussion of the
wake structure, stability and dimensionless shedding
frequencies.

Conclusions

For tori, the drag data closely support the exact theory of
Majumdar and O'Neill and Dorrepaal et al. in the viscous
regime. In the Reynolds number range 70 < Rec < 270, the
drag coefficients for tori are about the same as a finite
cylinder of the same aspect ratio. In the vortex shedding
regime, a wide variety of flow patterns are observed.

In the high solidity range, 0.45 --<:: 5 -<: 1.0, there is a critical
Reynolds number at a solidity of - 0.6 where the flow pattern
suddenly shifts from the oblique loop wake structure typically
generated by solid bodies to a ring-type counterrotating
vortex pair. In the medium solidity range 0.15 -<: 5-<: 0.45,
two annular vortex patterns can exist, either the coun
terrotating ring vortex pair or as a helical counterrotating
vortex pair. The latter is less common but more stable and
occurs in the approximate Reynolds number range of 100 <
Rec < 300. In the low solidity range 0 < 5 -<: 0.15, only the
ring-type vortex structure was observed. The wake properties
approach that of a circular cylinder as 5-0.

The viscous drag of a family of finite circular cylinders is
predicted by Batchelor's relation at high aspect ratio. The
drag of low aspect ratio cylinders is predicted within ± 2
percent by a modified ellipsoid theory. The transition regime
is predicted by relations of the form [(CD/CDv ) - !LX> = Ci

Re~.

The effect of transverse curvature reduces the drag by a
maximum of 13 percent in the viscous regime.

(bl Rec 87'(al Rec'= 48

(el Ree 87
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It is always interesting to see a careful experimental series
which can be compared to theoretical expressions for some
range, and also extends insight into ranges where theory is still
lacking. A connection between linear objects of length Land
tori with mean circumference L is not obvious.

I. Viscous Regime

For low Reynolds numbers, Rei:::: (2IUlv) < 1, where 21 is
the longest particle dimension, Fig. 11, there has to be a
distinction between steady Stokes drag (Rei -0, unbounded
domain) and the measured drag. Stokes drag for a variety of
bodies is known analytically or can be estimated by in
scribing/circumscribing bodies after Hill and Power [30].
Long cylinders fall' stably broadside, as do straight strings of
spherical particles [31], prolate ellipsoids and a rectangular
parallelpiped, Fig. l(a). The frontal area, F, is important. The
drag of the prolate spheriod is less than that of the cylinder or
prism. The open tori, solidity 8 < 1, have F :::: 8· 7rlz, less
than a solid closed particle (8= 1) with the same side
projection, and less Stokes drag.

The "Oseen" effect, the inertial increase of drag is a simple
linear function of Rei dependent on the Stokes drag for ar
bitrary solid particles3 or circulating fluid spheroids [33]. The
approximation is only valid to O(Re/), Le., Rei < < 1.

The boundary effect for particles traversing the centerline
of a fluid container is a function of container shape [34, 35].
For an outer cylinder of radius R o and axisymmetric particles
[36], general solid particles5 or circulating fluid spheroids
[33], it is a linear function of '1\ :::: IIRo, to O('I\z), where the
coefficient multiplying '1\ is also a function of Stokes drag.

In the linear perturbation range then for all test particles

[1]

where the constants k 1 and k z are functions of particle shape
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In the linear perturbation range then for all test particles

[1]

where the constants k 1 and k z are functions of particle shape

2M. S. Eisenhower Research Center, Applied Physics Laboratory, The Johns
Hopkins University, Laurel, Md. 20707.
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pearance. The vortex arrangement behind an open torus will 
be quite different, but initially axisymmetric. As the Reynolds 
number increases, the vortex shedding pattern depends on 
solidity S. The critical Reynolds number for shift of pattern 
from the solid spheroidal loops to ring-pairs is a phenomenon 
worth pursuing in more depth experimentally and 
theoretically. 
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Fig. 11 Projected area of particles. 

and internal circulation for fluid spheroids. The settling 
factor Km = U„/Us, where Us pertains to the Stokes drag on 
an "equivalent" solid sphere (same volume and density), 
involves other shape functions but allows the use of the solid 
spherical coefficient 2.1044 for extrapolating X — 0 for very 
low Re/ results at small X (author's Fig. 1). The bracket in 
equation (1) can be inverted with k, change of sign to the 
order of estimation. (The second method can be ignored.) The 
results are consistent with the exact torus theory, Fig. 2. 

Extrapolations are sensitive to data accuracy and the 
percentages quoted seem to be in terms of Kb = 1 not K„. 
(The data point for S = 0.036, Red = 0.803 should not have 
been included. The value is large because of Red.) An average 
error of 0.998 must be a mistake. 

Since all shape factors can be related, one could useAe, an 
"equivalent prolate spheroid" instead of a sphere. However, 
I doubt the statement, about two "exact" theories showing a 
prolate spheroid has a higher drag than the a cylinder of the 
same (large) aspect ratio. The frontal area of the spheroid is 
always less by a factor 7r/4 for all values of A. Slender-body 
theory, all singularities on the axis, does not take into account 
the flat ends of a cylinder. See references [37, 38]. 

II. Inertial Regime 
Here all the curves are empirical. Figure 4 shows smooth 

curves for the cylinder data, each A value represented by a 
linear CD versus log Rec relationship at small Rec (less CD for 
greater A), curving up as Rec — 1000 (inverse order for A). 
The equation (29), for the deviation of measured CD from the 
linear (Stokes) CD, obviously cannot be used for 1 > Rec — 
0. The "transition region" where standing vortices develop, 
become unstable and detach themselves as Rec — oo is 
dependent on boundary proximity even if the measured drag 
is not. The attached vortex behind a finite cylinder moving 
broadside must be three-dimensional from its initial ap-

R. E. Johnson3 

Although the title of this paper emphasizes that it will study 
the effects of curvature on the drag and vortex shedding of 
elongated bodies, this paper seems to concentrate its effort on 
determining which theoretical or empirical equation best 
describes the drag on cylinders and tori. Consequently, the 
paper gives the reader a fairly good overview of our ability to 
predict the drag on cylinders and tori for Reynolds numbers 
below 1000. 

I found the observations and photographs of vortex 
shedding from tori to be the most interesting part of the 
paper. Some of the interesting features observed, however, 
may be due to the unique body symmetry and absence of body 
ends. One must question whether a cylinder bent into a 
segment of a torus would produce any of the same vortex 
shedding patterns. The existence of two possible vortex 
patterns, a counterrotating ring vortex pair and a helical 
counterrotating vortex pair, in the medium solidity range is an 
intriguing observation. Unfortunately the present study gave 
little indication of why these two patterns exist. 

R. G. Hussey4 

The paper by D. R. Monson is interesting and well done. 
His drag results and his striking photographs of vortex 
shedding from tori are valuable contributions. Some of his 
results for cylinders are different from those found by me and 
my co-workers, so I welcome the opportunity to comment on 
these differences. The author points out that his boundary 
effect observations for cylinders in the inertial regime are 
different from those of Huner, and for ReL = 2.9, his 
coefficient of 1.37 is closer to de Mestre's 1.339 than to 
Stalnaker's 0.886. Huner, de Mestre, and Stalnaker treated 
the case of a cylinder moving midway between parallel walls, 
whereas a circular outer boundary is used in Monson's ex
periment. The author obtains a relation between the two 
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geometries by using the concept of hydraulic diameter. He 
correctly points out that the solution of Happel and Bart for a 
square outer boundary indicates that the use of the hydraulic 
diameter concept in that instance gives a boundary coefficent 
that is too large by 10 percent. Another example is the sphere 
moving midway between infinite parallel plane walls, where 
use of the hydraulic diameter gives a coefficient of 1.052, 
which is larger than the correct value of 1.004. It is possible 
that when the object is a slender cylinder moving broadside 
rather than a sphere, the difference in the coefficient may be 
larger. Therefore, in the absence of a more complete 
justification for the use of the hydraulic diameter concept in 
the Stokes flow region and the interial region, I am inclined to 
attribute our different experimental results to differences in 
the geometry of the outer boundary. The author may wish to 
compare his results to those of C. M. White [39], who also 
used a circular outer boundary. 

The author is correct in stating that Stalnaker's empirical 
inertial correction is based on a curve fit to experimental 
points that have considerable scatter. In a subsequent paper, 
Yang-Jen Chen [40] obtained a better correlation that extends 
to higher Reynolds number, but is consistent with Stalnaker's 
results. However, I think that the difference between these 
empirical correlations and Brenner's first order theory is not 
as large as the author indicates. In order to use Brenner's 
theory, it is necessary to know the Stokes drag. For long 
cylinders (A > 20), the slender body calculations of Russel (or 
Batchelor) can be used for the Stokes drag. Then at Re^ - 1, 
Brenner's theory gives a correction factor of 1.046 for A = 
100 and 1.067 for^4 = 20, while Stalnaker's expression gives 
1.062 (independent of A) and Chen's expression gives 1.051 
for A = 100 and 1.068 for A = 20. It is true for ReL < 1, 
both Chen's and Stalnaker's empirical functions give larger 
values for the correction factor than Brenner's formula, but 
the correction is small in this region (less than 0.7 percent at 
Ret = 0.1). At values of Re£ larger than 1, Brenner's theory 
is not valid. Finally, since Stalnaker's and Chen's correlations 
were obtained with cylinders of large aspect ratio, they should 
not be expected to apply to short cylinders (A = lorA = 4). 

Huner found that over the range of Reynolds number of his 
experiment (0.22 < Rec < 2.6), the dimensionless drag 
(drag/4Tr^£/L) consistently decreased with increasing cylinder 
length, and he used this observation to devise a means of 
extrapolating to infinite cylinder length. The author's results 
at Rec = 1 imply that the dimensionless drag increases with 
increasing cylinder length fox A > 100.1 am unable to explain 
the difference between our results. I think it is unlikely that 
the difference is due to the larger aspect ratio used by the 
author, because (at fixed Rec) larger aspect ratio implies 
larger ReL and the larger Rê , the more valid is the physical 
model (small end effects) proposed by Huner to explain his 
observations. 
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Author's Closure 
I would like to thank Professors Hussey and Johnson and 

Dr. O'Brien for their interest in and comments on this paper. 
Their discussions and additional references add further in
sight to the subject of this paper. I will comment on a few of 
their points. 

In order to detect the effect of transverse curvature on the 
drag and vortex shedding of elongated bodies, one must have 
a reliable noncurved body data base with which to compare. 
Even for the simple straight cylinder family, such needed 
information was lacking, and thus considerable effort focused 
on establishing this reference baseline. The study of transverse 
curvature effects in planes other than normal to the flow 
direction was beyond the stated scope of the paper. There are 
no doubt many further discoveries to be made in this area of 
study. 

Viscous Regime 
Dr. O'Brien seems to be implying that in the viscous regime 

study, comparisons were made between measured drag and 
various theoretical Stokes drag solutions which apply only for 
ReL — 0 and an unbounded fluid. This is not the case. Every 
effort was made to eliminate boundary and inertial terms 
from the measured drag values. With the present definition of 
shape factor, the Stokes drag on a sphere of the same volume 
as any arbitrary elongated body is used as a reference 
geometry. Then e.g., for a cylinder falling broadside within a 
container, equation (2) will give the measured drag as 

Meas. Drag = 
Stokes drag on 
sphere of equal 
vol. at same velocity \Kao)\Kh)\KhJ' 

(33) 

The shape factor Km may contain some inertial terms which 
may be estimated by Brenner's relation, equation (11). For the 
linear perturbation range, we solve equation (11) for Kxv, 
then use series expansions of the solution and retain only the 
first term. The result can be expressed in the form Ka = 
Kav/(\ + ki Re ,̂). Note that if ReL (or Rerf for the case of 
the torus) is significant, K„ will be smaller than Kmv not 
larger as supposed by Dr. O'Brien. Kb is approximated by 
equation (3a) which can be expressed as Kb = (1 + k2 X) - ' . 
Equation (3) can be converted to the same form as discussed 
by Dr. O'Brien, however, I find equation (3) to be accurate 
over a broader range of X than is equation (3a). Similarly, the 
approximate "endwall" correction factor Kbe, equation (6), 
can be expressed as Kbe = 1.0. 

I agree with Prof. Hussey that the constant in equation (6) 
may be a little low for the cylindrical boundary application, 
however, even in the A = 100 case, which had the largest 
endwall correction, if we increase the constant 0.011, say as 
much as 20 percent, the endwall correction 1 - Kbe would 
only change from 0.6 to 0.7 percent. The question remains 
whether Brenner's equation (3) remains accurate for greatly 
elognated particles. I believe this requires further verification. 

When these linearized expressions are substituted into 
equation (33), we obtain 

Meas . Drag = 
Stokes drag . 1' + klReL+k2\), (34) 

which is the same as Dr. O'Brien's linearized equation. For 
solid particles, kt is a function of the particle shape and k2 
and is a function of the particle shape and the boundry shape. 
The original relations from which equation (34) was derived 
are accurate over a somewhat wider range of ReL, X, and 
Dh/L than would be this linearized version. 

The value Kmv, the Stokes regime shape factor for an 
unbounded fluid, is then extracted from equation (33), 
hopefully with a minimum of error if we have met all the 
conditions on the various relations. In the alternate graphical 
extrapolation method, to eliminate the boundary effect Kb, 
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the experimental measured quantity (Ka Kb Kbe) obtained 
from equation (33) is plotted for various values of X and 
extrapolated back to zero X using the slope predicted by 
Brenner's theory as a guide at the intercept if the curve is not 
linear. The intercept value yields the quantity (K„ Kbe) since 
when X = 0, Kb = 1. then {K„, Kbe) was divided by Kbe as 
estimated by equation (6) and corrected to the Stokes regime 
utilizing Brenner's equation (11) evaluated at the Reynolds 
number of the lowest value of X tested. Be advised that in 4, 
the test container diameter was fixed and the model size (and 
hence Re) was varied. This yields an estimate for K^ which is 
compared to theoretical values. It is the error 1 - (K„v/ 
K0 w theory ) in percent that is being quoted. 

C. M. White measured the drag on cylinders having aspect 
ratios from 4.9 to 158. He used a combined empirical ex
trapolation relation to simultaneously correct to infinite 
aspect ratio and an unbounded fluid. Only in his Table 2 tests 
did he give uncorrected drag coefficients which could be 
corrected to finite aspect ratio. Choosing two values close to 
the present tests, A = 4.9 and 11,1 reduced the data to K^ as 
was done for the cylinders of A < 10 in the present paper. The 
results are K^v = 0.697 and 0.559, respectively, compared to 
0.727 and 0.570, respectively, for the semiempirical cylinder 
relation, equations (22), (27), and (28). 

Dr. O'Brien's discussion of the "equivalent prolate 
spheriod" has pointed out a misleading statement in the 
paper. As long as we are comparing bodies of equal volume 
but different shapes at a given velocity, equal shape factors 
will ensure equal drag. The ad hoc modification of prolate 
spheriod theory adjusts its shape factor to be equal to that of 
a cylinder or torus of a given aspect ratio. The drag on the two 
bodies will be different at a given velocity since the volumes of 
the two bodies are not the same. The ratio of the volume of 
the prolate spheriod of equal shape factor to that of the 
geometry of interest is given by VeIVi = 2/(3 O)2). The ratio 
of equivalent spherical diameters would be the cube root of 
this ratio. Thus, the subscript e and the definition of crin the 

become increasingly inaccurate with decreasing aspect ratio 
since they neglect the drag of the ends. Oddly, inclusion of 
this term would increase the differences between experimental 
data and, e.g., the Batchelor theory at the low aspect ratio end 
of its range of validity. 

Dr. O'Brien has cited references which lead to a multitude 
of alternate a priori analyses which attempt to predict the 
Stokes drag of arbitrary bodies, especially elongated bodies. 
Except for the Hill and Power extremum principles method, 
all the other analysis are oriented toward estimating drag for 
the case of fall along the major axis rather than broadside. 
Although some of the methods have been suggested to be 
applicable for the broadside fall case as well, their accuracy 
and range of validity has not been demonstrated. They all 
appear to lose accuracy and/or become unwieldy for large 
aspect ratios and thus would not be useful over the full range 
of aspect ratio. I find the ad hoc modification of the prolate 
spheriod equation to be a relatively easy procedure which 
allows approximations to data or other theories over the full 
range of aspect ratio since it has the correct asymptotic form 
for both large and small aspect ratios. 

For the torus, Kbe = 1 in equation (33) since it has no ends. 
The 5 = 0.036 data point had little influence on how the curve 
was extrapolated back to zero X, Fig. 11. As can be seen in the 
paper, when this data point was not included in the second 
method, results were comparable to the first method. The 
"error" of 0.998 should be corrected to read "correlation." 

Inertia! Regime 

From a theoretical standpoint, Dr. O'Brien is correct in 
that transitional expressions developed for Rec > 1 which fit 
the form of equation (29) are not necessarily correct for 1 > 
Rec — 0. This is especially true for large A since we know (3 is 
a function of Reynolds number even though it may be con
stant over a limited range of Reynolds number. The status of 
transitional relations for the cylinder family is as follows: 

[CD/CDv - 1 ] 0 Range of Study Author 

0.062 ReL ' 20 < A < 380 
0.02 < ReL < 10 

Stalnaker and 
Hussey [1] 

0.12,4-1/4ReL
0'75 

0.114^-a279ReL
0-779 

0.825.4 "0-779RgL0.779 

0.215 

- " ooiir 
Re, 

11 <A < 49 
0.01 AW4 < ReL <30Al 

A < 13 

A = 100 
3 ' 1200 

'< Re, '< 
1+log/l l+log.4 

Theory 
ReL '< 0.05 

Chen and Hussey 
(Hussey's references [40]) 

Present 

Brenner and Cox [10] 

paper should be taken to represent an ellipsoid of equal shape 
factor rather than drag. ds for the geometry of interest is to be 
used in equations (2) and (10) to estimate the drag. Com
parisons on the basis of equal frontal areas are equally valid 
but would require a redefinition of the drag equation to 
reflect this change of reference. 

Dr. O'Brien has reminded us that the cylinder drag theories 

For the purpose of making engineering estimates, the 
overlaps in aspect ratio and Reynolds number of these studies 
and the similarities in form and values of the constants in 
these relations suggest that Chen's relation may be acceptable 
for A < 11 and the present relation for A < 13 may be usable 
for ReL < 3/(1 + log A). Stalnaker's relation appears to be 
most accurate in the A = 10-20 range and the present relation 
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for A = 100 may be acceptable for ReL < 1. In the range 0.05 
< Ret < 1 most of these relations agree within a percent or 
two. For ReL < 0.1, Prof. Hussey has shown that the dif
ference between these relations are small and Brenner's theory 
suggests that the drag will be less than one percent greater 
than the Stokes drag for ReL < 0.05 for all A. 

At Rec = 1, the A = 100 drag coefficient is 17 percent less 
than the drag projected by Huner [22] for A = oo. There 
would have to be an error in this data point several times the 
stated accuracy for this point to fall above the curve for in
finite aspect ratio. Presently, I have no reason to suspect such 
an error in the data. This result points out the need for more 

data at large aspect ratios over a range of Reynolds number 
spanning this point. 

Dr. O'Brien suggests, without documentation, that the 
vortex shedding patterns may be sensititive to boundary 
proximity. If this is correct, it points out the need for test 
containers which are large compared to the largest dimension 
for greatly elongated bluff bodies. This need was also made 
clear for obtaining accurate viscous drag data as well. The 
reasons for the dual vortex patterns in the medium solidity 
range will no doubt be revealed in a stability analysis of 
coannular shear layers of opposite vorticity. To my 
knowledge, such a study has never been done. 
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The Basic Aerodynamics of 
Floatation 
The original derivation of the basic theory governing the aerodynamics of both 
hovercraft and modern floatation ovens, requires the validity of some extremely 
crude assumptions. However, the basic theory is surprisingly accurate. It is shown 
that this accuracy occurs because the final expression of the basic theory can be 
derived by approximating the full Navier-Stokes equations in a manner that clearly 
shows the limitations of the theory. These limitations are used in discussing the 
relatively small discrepancies between the theory and experiment, which may not be 
significant for practical purposes. 

Introduction 
Sheet metal strip that is painted or coated simultaneously 

on both sides is widely used in the construction of domestic 
refrigerators, washing machines, and many other products. 
The basic aerodynamics of modern floatation ovens, in which 
the continuous, freshly painted metal strip is floated, dried, 
and cured, is the two-dimensional analog of that of 
hovercraft [1-3]. The continuous strip, represented, in side 
view, by FF' in Fig. 1, passes through a series of ovens 
containing floatation nozzles arranged in pairs above and 
below the strip; only the upper nozzle is shown in Fig. 1. The 
center line shown in Fig. 1 is also the center line for the lower 
nozzle of the pair. Each nozzle is symmetrical about the 
centerline and consists of two jets, each emerging at an angle 
d. In practice the jets are effectively two-dimensional and are 
aligned at right angles to the direction of strip movement. We 
show below that the force acting on FF' is proportional to the 
momentum flux of the jets, but varies roughly as the inverse 
of the floatation height, h. With the upper nozzle delivering a 
smaller momentum flux than the lower, strips of varying 
thickness and hence weight, and with different surface 
coatings can be supported without varying the momentum 
flux of either nozzle. The reason is that a static strip will float 
at a height where the combination of its weight and the force 
due to the upper nozzle just balances the upward force due to 
the lower nozzle. In general, this balance could not be 
achieved if the nozzle consisted of a single jet only, because 
then the force acting on FF' would be independent of h. In 
practice, the ratio of strip speed to jet exit speed is usually 
much less than one, so that a static analysis, in which the strip 
is assumed stationary, is justified. 

When we surveyed the literature on hovercraft, we were 
amazed by both the extreme crudity of the basic theory for the 
static lift, analogous to the force acting on FF' [2, 3] and by 
its spectacular success in describing the experimental results 
[3]. This paper is an attempt to explore the reasons for this 
success. In the next section we outline the basic theory and 

then show how the resulting expressions for the lift can be 
derived from the full Navier-Stokes equations in a manner 
that clearly shows the limitations on the validity of the ex
pressions. We then show the generally good agreement be
tween the theory and the axisymmetric (about the centerline) 
results of [3] and our results in a simulated two-dimensional 
geometry. Finally we discuss briefly some of the experimental 
departures from the theory in terms of the limitations of our 
analysis. 

Theoretical Aspects 
We briefly describe the basic theory, which is treated more 

fully by Jaumotte and Kiedrzynski [3]. To save space, the left 
side of Fig. 1 shows the assumptions and definitions for the 
basic theory and those for our alternative analysis (given 
below) are on the right. On the left side of Fig. 1, fluid of 
uniform density emerges from a slot of thickness t at an angle 
6 and then impinges on CF as shown. The basic theory 
assumes: 

C 1 F' 
mean reattachment point 

Contributed by the Fluids Engineering Division for publication in the 
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Fig. 1 Schematic of nozzle and plate. The assumptions and 
definitions for the basic theory are shown on the left side, those for our 
alternative analysis on the right. The metal strip, or the pressure tapped 
plate for the experiments, is represented by FF ' . 
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(i) the jet always remains at thickness t; 
(ii) the jet velocity always remains at UJt the value at exit; 
(iii) the jet follows a path tangential to the direction of the 

slot at exit and to CF at the impingement point B in Fig. 1 and 
that the radius of curvature remains constant; and 

(iv) Pc, the gage cushion pressure, is constant everywhere 
in the region bounded by the jets, the nozzle and CB, 

Note that assumptions (i) and (ii) imply that the flow is in-
viscid. Under assumptions (i) - (iv), the momentum flux 
through an elemental slice of the jet of thickness t and width 
d</>, where 4> is defined in Fig. 1, must be balanced by the force 
due to the pressure difference across the jet. Provided that r0 
> > t, it is easy to show that this balance requires 

PUjt=Pcr0. (1) 

Since r0 = hj (\ + cos 6), from assumption (iii) and the 
geometry, then 

J(\ + cos 8)=Pch (2) 

where J is the jet momentum flux of one jet. The force acting 
on the nozzle or craft is given by a ^-direction momentum 
balance. For a circular model it is 

L = PcS + Jlsin6 (3a) 

where S is the area of the base of the model. For a two-
dimensional nozzle the lift per unit width, L', is 

L'/2 = Pcb + Jsmd. (3b) 

Equations (3a) and (3b) show that the effect of opposing the 
two jets, each at an angle 6, is to introduce an extra term 
containing Pc into the equation for the lift. This effect can be 
described conveniently by defining a theoretical coefficient of 
ground effect, A T, as the ratio of L or L' from (3) to F or F', 
the force generated by a single vertical jet having the same 
momentum flux as the opposing jets [3]. Since F = Jl, and F' 
= 2J, and using equations (2) and (3), we have 

A T = S( 1 + cos d)/(hl)+ sine (4a) 

for circular models, and 

^7- = 6(l+cos0)/^ + sin0 (4b) 

for two-dimensional geometries. Equations (4a) and (4b), the 
final expressions of the basic theory, are shown below to be in 
surprisingly good agreement with the available experimental 
results. We suggest that the reason for this agreement is that 
equation (2) and hence (4), can be derived from the Reynolds-

Nomenclature 

AE = experimental coefficient of ground effect 
AT = theoretical coefficient of ground effect, equation 

(4) 
b = distance of slot from centerline, Fig. 1 
h = floatation height, Fig. 1 
J = jet momentum flux per unit width 

Jw = wall jet momentum flux per unit width 
L = force acting on circular model 

L' = force per unit width acting on two-dimensional 
model 

/ = length of jet in azimuthal direction 
n = normal coordinate fori,n-system, Fig. 1 
P = pressure 

Pc = cushion gage pressure 
Pcc = centerline gage pressure 

Pcs(s) = gage pressure along dividing mean streamline 
P0 = ambient pressure 
R = local radius of curvature in s.n-system 

averaged Navier-Stokes equations for turbulent flow at 
sufficiently high Reynolds number. 

The fundamental equation we need is the x-component 
momentum balance for the control volume CDE' F ' , on the 
right side of Fig. 1, chosen so that the flow out of face E' F' is 
nearly parallel to CF'. Apart from the obvious necessity that 
it has to lie to the right of the mean reattachment point, B', 
we make no further restrictions on the position of F ' . By 
symmetry there can be no mean flow across the centerline, so 
we assume that the centerline pressure, Pcc, remains constant 
with y. After neglecting the contributions from the entrained 
fluid and the turbulent fluctuations to the momentum flux, we 
have 

P\ Ux>(x')dx'+p\ U2
x(y)dy=Pcch+\ Tw(x')dx' 

JO JO JO 

+ j T„ (x) dx (5) 

where Ux> is the component of the exit velocity in the x' 
direction and the second shear stress integral is evaluated 
from C to F ' . In words, equation (5) represents the balance 
between the net efflux of x-direction momentum from the 
control volume and the sum of the x-direction forces acting on 
the surface of the control volume. The two shear stress in
tegrals along DA' and CB' will be small and of opposite sign. 
Furthermore, the flow out of the face E 'F ' will be a wall jet, 
with a local velocity Ux, so the contribution to the second 
integral of TW from B'F ' is likely to be small [4], and we later 
present experimental results that support this assumption. 
Thus, equation (5) can be rewritten as 

J cos 6+Jw^Pcch. (6) 

The only additional assumption made is that the streamlines 
are tangential to the slot direction at exit; uniformity of the 
exit profile has not been assumed. To obtain a useful ex
pression for the lift from equation (6), we have to relate J to 
/„,. To do this in the most general manner, we write the 
Reynolds-averaged Navier-Stokes equations for turbulent 
flow in the orthogonal ^-coordinates shown on the right-
hand side of Fig. 1. These equations were derived by Brad-
shaw [5] and Mahgoub [6], and have been used in several 
calculations of curved turbulent shear layers, e.g., [7-9]. We 
arbitrarily choose the s-axis, and origin for the ^-coordinate, 
as the dividing mean streamline separating the jet from the 
interior flow. The normal direction, n, is at right angles to s, 
with a local radius of curvature, R, which need not be con-

r0 = assumed radius of curvature, Fig. 1 
5 = area of circular model 
s = stream wise co-ordinate for s.n-system, Fig. 1 
t = slot (and jet) thickness at exit, Fig. 1 

U = mean velocity in s-direction 
Uj = exit velocity for uniform jet 
u = fluctuating veloctiy in 5-direction 
V = mean velocity in /z-direction 
v = fluctuating velocity in w-direction 

x,x' ,y = coordinates defined in Fig. 1 
z = spanwise coordinate, into page in Fig. 1 
8 = jet thickness at any 5, Fig. 1 
6 = angle at exit of jet, Fig. 1 
p = density 

T„ = wall shear stress 

Overbars 
denote time averages 

324/ Vol. 105, SEPTEMBER 1983 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.90. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



stant. We define the local jet thickness, 8, as the distance from 
the dividing mean streamline, where V = 0 (as there can be no 
mean flow across any mean streamline), to the position where 
U is effectively zero on the atmospheric side of the jet. 
Although we make an order of magnitude restriction on 5 
later, 5 need not remain constant We will assume that the 
turbulence quantities like uv and u2 are effectively zero at the 
edges of the jet. The continuity equation is 

8U d 

ds dn 

U" 

s 

( ' • * ) " 
0 

V 

5 

V 

r0 

(7) 

where the order of magnitude of each term is given un
derneath. Here U" is the maximum velocity in the jet at any s, 
and r0 has been used as a convenient estimate for R. Thus 

/U"6\ V=°(-J-) (8) 

where 0 denotes order of magnitude, as R must be greater 
than 8. The n-momentum equation is 

dUV 

ds dn ( ' • * ) 
K2-

• ( ' • £ ) 

u2 

R 

dv2 

dn 

1 dP 

p dn 

v2 — u2 

R 

duv 

ds 

(9) 

The continuity equation has been used to modify the mean 
velocity terms. To obtain an expression for the momentum 
flux, equation (9) has to be integrated across the jet. We 
anticipate the need to neglect the integrals of the first two 
terms in comparison to that of LP-/R. Using equation (8) to 
obtain the orders of magnitude of the integrals shows that this 
neglect is justified if 

s2/(r05)>>l or AAs<0(10) (10) 

assuming that s/5 = 0(10). The restriction on his is likely to 
be satisfied except at very small s. With the assumed end-point 
behavior of the turbulence terms, the integral of equation (9) 
is 

RJ 
(V2+u2)dn = ^ ^ -

o p 

d P* 

ds Jo 
uvdn (11) 

where Pcs(s) is the static (gage) pressure along the dividing 
streamline. Given the large effects of mean streamline cur
vature on turbulence structure, e.g., [5], it is not safe to assign 
an order of magnitude to the last term in equation (11). If it is 
negligible (the integral must be zero if the jet was symmetrical 
about the position of U") then we arrive at the approximation 
of which equation (1) is a special case. Equation (11), with the 
u2 and uv terms ignored, was used in the calculations of [8,9]. 
Finally we require the independence of the momentum flux 
which can be obtained from the s-momentum equation. It is 

± ( i + = W + ^ l dp d¥ 

dn\ Rf 

dU2 d 

17 + 
R 

0+1) 
duv 

dn 

p ds ds 

2uv 

R 
(12) 

Although the second mean velocity term will integrate to zero 
across the jet, we again anticipate the need for the U2 term to 
dominate, in this equation over UV/R. Using equation (8) this 
dominance occurs when 

5/r0<<! or h/t>>\ (13) 

taking & ~ t, rQ ~ h, and s not too small. We discuss the 
effect of the limitations (10) and (13) later. Since P0 is ob

viously constant we can write the approximate integral of 
equation (12) as 

— (U2 + u2)dn^ — (P-PQ)dn--\ uvdn. 
ds Jo p ds Jo R Jo 

Again we cannot assess the importance of the turbulence 
term. If the last integral is nearly zero (as it would be in a 
symmetrical jet), then 

(U2 + u2) dn + — \ (P-PQ)dn-constant. 
Jo p Jo 

Pes (s) r0 Pcs(s)8 
p 2p 

The orders of the two integrals are given underneath. The 
order of the first comes from equation (11), that of the second 
should be obvious. Thus, by limitation (13) 

(U2 +U1) dn - constant = / = pUj t 
*) 0 

(14) 

if the exit profile is uniform and of low turbulence intensity. 
In contrast to equation (5), which is valid only for the control 
volume C D E ' F ' , equation (14) applies at any point along the 
jet from the exit to the mean reattachment point B ' . At 
reattachment however, there is no guarantee that the mean 
streamlines lie totally in the x-direction, as required by 
equation (5). If the momentum flux out of face E ' F ' in Fig. 1 
is equal to the left hand side of equation (14), which seems 
likely but cannot be proved easily, then the unknown /„, in 
equation (6) is given by 

Jw^J=pUjt (15) 

for a uniform exit profile. Thus, equation (6) becomes 

J(l+cosd)^Pcch. (16) 

From equation (11), Pcs {s) ~ R ~' so that a nearly constant R 
is associated with a nearly constant Pcs{s), and hence with 
Pec — Pc everywhere1. Equation (16) then reduces to equation 
(2). Since equation (3) is valid if the cushion pressure is 
constant, the final expression of the basic theory, equation 
(4), is also an approximate solution to the Navier-Stokes 
equations. 

The present derivation of equation (2) clearly shows two 
important restrictions on the validity of the basic theory. 
Firstly, limitations (10) and (13) require that the inequalities 
s2/(r0S) > > 1 and r0/5 > > 1, are valid together. Since s/r0 

is of order one at most, the first inequality requires s/5 > > 1, 
in other words the jet must obey the classical thin shear layer 
approximation. The restriction on r0/5, which is likely to be 
satisfied if hit is sufficiently large, then reduces to the 
requirement that r0/t >> 1 needed to obtain the simple form 
of equation (1). Secondly, R must remain nearly constant, but 
there are no further restrictions on, say, the position of the 
mean reattachment point. Apart from these restrictions, 
equations (2) and (4) are almost independent of the detailed 
mean velocity and turbulence profiles of the jet and of its 
path. Thus it is not surprising that equation (4) remains 
substantially unaltered by the many ad hoc modifications to 
the basic theory, such as those described in [3] and [10], or by 
the inclusion of compressibility effects, e.g., [11]. 

Comparison With Experiments 

The only previous measurements we could find were those 
of Jaumotte and Kiedrzynski [3] which were not sufficiently 
detailed to test the limitations of the present derivation. Our 

Note that under these conditions U = 0 along the dividing streamline. In 
this paper we have tried to avoid the vexing, but peripheral, question of whether 
the cushion pressure determines R or vice versa. 
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experiments were performed on a nozzle box fitted to the 
contraction of the wind tunnel described by Subramanian and 
Antonia [12]. The nozzle box dimensions were: b = 75mm; t 
= 5 mm; and width = 375 mm. The slot was constructed as a 
slightly convergent nozzle with an average 6 of 30 deg. The 
width was constrained by the wind tunnel dimensions and so 
the aspect ratio was significantly smaller than in an actual 
floatation oven. To simulate a two-dimensionality geometry, 
end plates were installed to force all the flow to exhaust in the 
.^-direction of Fig. 1. The two-dimensionality of each jet was 
checked by traversing a 1.2 mm total head tube along the 
surface, just upstream of each of the four lips. No detectable 
variation of surface total head was found over the central 300 
mm or between the two jets. 

The lift per unit width was measured using a plate with 
eighteen 1 mm wall pressure tappings installed along the 
centerline (z = 0). Several other tappings, placed sym
metrically about either z = 0 or x = 0, were used to set up the 
plate at each h by zeroing the pressure differences across the 
centerline. All pressures were measured by a Betz projection 
manometer with a resolution of 0.02 mm H 2 0 . Using the 
same total head tube, the wall jet velocity profiles were 
measured at a position where the wall pressure had fallen to 
(and stayed at) atmospheric; all the present results were 
obtained at x/b = 1.87. At this x/b, the two-dimensionality 
of the wall jet flow was checked using the total head tube. 
Over the central 200 mm, the surface total head varied by less 
than 5 and 10 percent at h/t = 2 and 15, respectively. The 
negligible difference between the wall and ambient pressures 
implies the validity of the boundary layer approximation and 
hence that the streamlines were nearly parallel to the plate. 
Thus our fundamental equation, (6), applies at x/b = 1.87 
and can be used to check the accuracy of measurement. 

Because of the uncertain behavior of the static pressure 
across the jet, and the consequent difficulty of measuring it 
accurately, the jet profiles at exit were measured using a 
home-made 5 /mi single hot wire probe and a DISA 55D01 
main unit. The probe was calibrated before and after 
measurement in the potential core of an adjacent plane jet rig. 
There was no detectable drift in the calibrations for the results 
presented. The jet exit velocity was around 25 ms" 1 , Fig. 2. 
To simulate an actual floatation oven, the fan speed was held 
constant, so the momentum fluxes varied with h. We estimate 
the accuracy of measurement as: L', 4 percent; Ux>, 4 per
cent; Ux, 2 percent; J and Jw, 10 percent; a.ndAE, 14percent 
where AE — L' I2J is the experimental coefficient of ground 
effect. The important experimental results are given in 
Table 1. 

The jet profiles, measured about 0.5 mm downstream of 
the exit, are shown in Fig. 2; x'n is parallel to x', but with an 
arbitrary origin that was constant for all hit. The jet profiles 
become more uniform as hit increases and the magnitude of 
the velocities of the entrained air, on both sides of the jet, is 
small but non-zero. Note that a single hot wire measures the 
magnitude of velocity only, but that the entrained air is likely 
to enter the jet predominantly in the ^-direction and so will 
not contribute to the s-direction momentum flux. This causes 
a small uncertainty in calculating J from 

J/s\n6 = p\ui{x'„)dx'„. (17) 

The integral was evaluated only over the region where U > 10 
ms^1 . 

The measured wall pressure distributions with the fitted 
cubic spline curves used to obtain L' are shown in Fig. 3. Pcc 

decreases rapidly with increasing hit. The position of 
maximum pressure, A-max, and xmin, the position of the local 
minimum between x = 0 and xmax, both move inward with 
increasing hit. This movement is shown more clearly in Fig. 
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Fig. 2 Jet exit velocity profiles. Symbols given in Table 1. 

4. As in other reattaching flows, such as over a backward 
facing step, e.g., [13], the mean reattachment point is likely to 
lie between xmin and xmm. Because of the extremely small 
logarithmic region in our wall jet profiles, we could not 
measure any wall shear stresses with sufficient accuracy to 
obtain a better estimate for the reattachment point. However 
Fig. 4 strongly suggests that the reattachment point moves 
inward as hit increases. 

Table 1 shows r, the ratio of the left hand and right-hand 
sides of equation (6). The magnitude of the ignored con
tribution from the wall shear stress to the right hand side was 
estimated using the approximate relation between the wall jet 
Reynolds number and skin friction given by Launder and 
Rodi [4]. Although this relation is valid only for fully 
developed wall jets, the maximum contribution was less than 
2 percent justifying the neglect of the term. The maximum 
measured imbalance in equation (6) is 20 percent at hit = 6, 
which is just inside the sum of the estimated errors in J and 
J„. Although this discrepancy may appear to be large, it is no 
worse than typical errors incurred in applying a much sim
plified form of equation (6) to a wall jet issuing from a slot 
parallel to the x-axis. Launder and Rodi [4] list fourteen such 
experiments and indicate an average of the maximum im
balance in the individual experiments of 26 percent. Thus it is 
reasonable to conclude that equation (6) is valid at all hit. 

Table 1 shows that the equality between J and Jw required 
by equation (15), breaks down for hit a 8.0. This breakdown 
is associated with increasing non-uniformity of the cushion 
pressure, as evidenced by the behavior of Pmm^Pa in Fig. 4. 
As JwIJ decreases, equation (6) causes the measured Pcc to 
increase relative to the value calculated from equation (16) 
and given in Table 1. The table also shows Pcc calculated from 
equation (36) with the assumption that Pc = Pcc. Comparison 
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with the measured Pc c shows a discrepancy that increases 
slightly between hit = 2 and 15. 

Figure 5 compares the theoretical coefficients of ground 
effect with the present measurements and those of [3] who 
used a circular "hovercraft" model of 352 mm diameter with 
/ = 3.8 mm and 8 = 45 deg. They measured the lift directly by 
mounting a pressure tapped plate on a force balance. For 
different balance forces the mass flow to the model was 
adjusted until a specified h was obtained. The jet momentum 
flux was obtained from the measured mass flux by assuming 
that Uj was constant across the exit. 

The discrepancy between equation (4b) and the present 
results becomes significant for hit a 8.0, while the 
axisymmetric results of [3] show excellent agreement 
everywhere with (4a). However, they did not report any in

dependent measurements of either J or Jw, nor did they 
mention any consistency checks between the measured plate 
pressure distribution and the balance force. Therefore it is 
difficult to assess the reasons for the excellent agreement; it is 
possible that there may be smaller changes in R if 6 is in
creased from 30 to 45 deg. 

Discussion and Conclusions 

The most important results from the last section are firstly, 
the experimental support for equation (6) at all h/t and 
secondly, the breakdown of the basic theory, equation (4b), 
for hit S 8.0, in the present study. The second result is 
somewhat surprising because the limitation of (13), taken at 
face value, suggests that the basic theory should become more 
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Fig. 3 Plate pressure distribution. Symbols given in Table 1. Pressure Fig. 4 Dependence of Pm\n, x m i n , and x m a x on h/t. °,Pm\nlpcc °> 
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Table 1 Main experimental results 

h/t 

2 
4 
6 
9 

12 
14 
15 
16 
18 

Symbol 
o 
n 
+ 
« 
X 
A 
D 
T 

J 
(N/m) 

2.18 
2.80 
3.10* 
3.23 
3.25* 
3.26 
3.27* 
3.27* 

(N/m) 

2.02 

2.53 

2.13 
1.77 
1.72 
1.61 
1.55 

L' 
(N/m) 

47.90 
38.44 
27.93 
21.38 
16.93 
14.99 
14.12 
13.60 
13.11 

r 

1.03 
1.21 

1.03 

1.10 

(a) 

276.3 
212.6 
145.0 
107.8 
86.21 
65.63 
59.76 
55.84 
68.57 

Pec (Pa) 

(b) 

203.4 
174.16 

100.45 

81.11 

(c) 

241.7 
167.5 

91.33 

72.40 

•denotes interpolated or extrapolated value 
(a) P„„ measured 

(c) P, 

Pcc measured 
from equation (16) (b) Pcc from equation (16) 

. from equation (3b) and assuming Pc = Pri cc 
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h/t 
Fig. 5 Theoretical and experimental coefficient of ground effect, a, 
present results; • , present results with J interpolated or extrapolated 
(see Table 1); o, [3], Solid lines are from equation (4). 

accurate as hit increases. Our extended analysis shows that 
the breakdown is most likely associated with the failure of the 
local radius of curvature to remain constant near the mean 
reattachment point. Figure 4 shows that the reattachment 
point moves inward (x decreases) with increasing hit. If 
altering h does not influence the trajectory at small s, as 
suggested by Fig. 2, then the significant changes in R occur 
close to the reattachment point. This would be associated with 
a considerable variation in the pressure acting along the 
dividing mean streamline, causing the non-uniformity of the 
plate pressure, as measured by Pmi„/Pcc. 

The derivation of the basic theory, equation (4), from the 
Navier-Stokes equations shows that the former contains or 
requires the least amount of information possible. For 
example, it is independent of the detailed mean velocity 
profile of the jet. A more detailed theory would either have 
to be given, or be able to calculate, the path of the dividing 
mean streamline. However, for engineering purposes, the 
discrepancy between the theoretical and experimental coef
ficients of ground effect may not be important, and could be 
reduced by an empirical, geometry-dependent modification to 
equation (4). Therefore, the basic theory, originally derived 
using extremely crude assumptions, has a generality that is not 
obvious in the restrictiveness of those assumptions. 

One of the referees suggested that we comment on the 
applicability of our analysis to other "flows with constant 
pressure cavities." The only relevant flow known to us is a 
turbulent jet discharging parallel to, but offset from, a solid 
wall. The resulting velocity and temperature fields cannot be 
described adequately by assuming a constant cavity pressure 
according to Hoch and Jiji [14]. 

Although not important for hovercraft, there is a need to 
understand the heat transfer characteristics of floatation oven 
nozzles. Such an investigation is currently underway. 
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Analysis of Turbulent Gas-Solid 
Suspension Flow in a Pipe 
The mixing length theory is extended to close the relevant momentum equations for 
two-phase turbulent flow at a first-order closure level. It is assumed that the mass 
fraction of the particles is on the order of unity, that the particle size is so small that 
the particles are fully suspended in the primary fluid, and that the relaxation time 
scale of the particles is sufficiently small compared with the time scale of the energy 
containing eddies so that the suspended particles are fully responsive to the fluc
tuating turbulent field. Bulk motion of the particles is treated as a secondary fluid 
flow with its own virtual viscosity. The proposed closure is applied to a fully 
developed gas-solid pipe flow in which the particles are assumed to be uniformly 
distributed across the pipe section. Predicted velocity profiles and the friction 
factors are in good agreement with available experimental data. 

1 Introduction 

Basic knowledge on flow of suspended solids in a gas 
through pipes has become increasingly important in the design 
of energy-related systems since the friction factor and heat 
transfer through the pipe wall may be significantly different 
from those of single-phase fluid flow in the pipe. Engineering 
applications include the pneumatic transportation of 
pulverized coal, flow of combustion products in heat ex
changer tubes and feeding of fine ohemical powders into a 
chemical reactor. There have been a number of experimental 
investigations on two-phase pipe flow and on two-phase flow 
through a nozzle or a Venturi, however, there have been 
relatively few analytical studies. 

Abramovich [1] assumed that the fluid element is retarded 
by a total drag force due to the suspended particles which 
results in a decrease of turbulent fluctuating velocity. Using 
an approximate mixing length theory, he found that finer 
particles had a stronger effect in decreasing turbulence levels 
than coarse particles. This is compatible with Sharma and 
Crowe's [2] computational result using a one-dimensional 
physical model, which states that the pressure drop in a 
Venturi tube is mostly due to finer particles suspended in the 
flow. 

Owen [3] estimated that rate of turbulent energy dissipation 
in a fluid containing small particles is higher than in a particle 
free fluid by the ratio (1 + ppl p) where pp is the mass of the 
particles per unit volume. By assuming that the turbulence 
energy is produced by the fluid only, he further proposed that 
the intensity of turbulence is decreased by the particles in the 
ratio (1 + -Pp/Pf)-'

A. 
Melville and Bray [4] applied Owen's theory to analyse a 

gas-solid turbulent round jet, in which the bulk motion of the 
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particles was treated as a hypothetically continuous fluid 
which is mixed with the suspending primary fluid (they called 
this hypothetical fluid a secondary fluid). Their results were in 
good agreement with Laats and Frishman's [5] experimental 
data. 

The present study is essentially a further extension and 
modification of Melville and Bray's model to a typical wall 
bounded two-phase turbulent flow in pipes. We derived 
virtual laminar and eddy viscosity models of the secondary 
fluid which are different from previous models. Using the 
proposed models, the appropriate momentum equations for 
fully developed pipe flow were integrated numerically to 
obtain the velocity profile and the skin friction factor and the 
results were compared with Boothroyd's [6] experimental 
data. 

2 Analysis of Gas-Solid Suspension Flows 

2.1 Momentum Equation. If the particle size is very small 
and the velocity of the primary fluid is high enough for the 
particles to be fully suspended [3], if pp/p/ is of the order of 
unity and the Stokesian relaxation time scale is of the order of 
the eddy life time of the primary fluid, the mean velocity of 
the secondary fluid can be assumed approximately equal to 
that of the primary fluid [4]. Under these assumptions, the 
Reynolds averaged equations for thin shear flows become, 
after Melville [7]. 

dU 1 d 

ax r or 

ud_P£ + vdpI, 

dx dr 

1 d 

r dr 

u^ + v™.. 
dx dr 

1 

Pf+'Pp 

dp_ 

dx 

Pf i a 
Pf + Pp r dr 

(rppVp) 

(1) 

(2) 

['("'"'-'"*)] 
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Here, the laminar kinematic viscosity of the primary fluid, vf/, 
and the virtual laminar kinematic viscosity of the secondary 
fluid, pph have been added to the equations in Melville [7] due 
to the low Reynolds number region near the pipe wall. 

Upper casses U and V are the mean velocity components in 
the axial and the radial directions, respectively. Primed lower 
cases u' and v' are the fluctuating turbulent velocity com
ponents of the primary fluid and u'p and v'p stand for those of 
the secondary fluid. The mean density of the secondary fluid 
is denoted by pp and its fluctuating component by p'p. An 
overbar is used to indicate the appropriate average of a 
variable. 

In order to close the system of equations at the first-order 
closure level, the following Boussinesq eddy viscosity models 
are assumed. 

dU 
" ^ •-ef-_ (4) 

and 

u v 

UnV„=' 

PpVp=-Kl 

dr 

dU 

•"Jr 

df>p 

' dr 

(5) 

(6) 

where, tj is the scalar eddy viscosity of the primary fluid, ep is 
that of the secondary fluid, and KP is an eddy diffusivity of the 
secondary fluid. The model (6) was proposed by Melville and 
Bray [4]. 

In general, the density of the secondary fluid is not 
uniform. It is well known that the variation of this density in a 
radial direction increases when the solid-gas loading ratio 
increases [8]. This is mainly due to the deposition of particles 
and gravity for horizontal flows. It is well known that the 
deposition may be due to turbulence in the core region. The 
particles may also be re-entrained back into the core flow due 
to the magnus lift and impact from other particles. It is not 

certain when the deposition becomes more pronounced in the 
pipe flows compared with the re-entrainment of particles. If 
the deposition of particles needs to be accounted for, the 
governing equations should be time-dependent, three-
dimensional and a realistic deposition model is necessary. 
Since our main objective is to devise simple turbulence models 
and a numerical methodology to compute wall-bounded 
suspension flow, consideration of such a complex situation 
mentioned above is not helpful to isolate the modeling 
problems from more complex phenomena. Thus it was 
assumed that the density of the secondary fluid is uniform 
over the cross-sectional area in a pipe [8]. Then, the 
momentum equation (3) is simplified to the following form. 

ox dr 

1 

P/+Pp dx 

i a 0/ i a r , , a in 
Pf + Pp r dr L dr J 

where ee/ is an effective eddy viscosity and is defined by 

(7) 

eel = ef + 
Pf 

(8) 

and vd is an effective laminar kinematic viscosity defined by, 

, PP 

Vel=Vfl+ Vpl, 
Pf 

(9) 

where pp/p/ is the solid-gas loading ratio. (More detailed 
discussion about vpi is presented in Section 2.4) 

2.2 Eddy Viscosity of Primary Fluid, Our model for the 
eddy viscosity of the primary fluid is based on Owen's [3] 
theory, which states that the presence of solid particles 
decreases the eddy viscosity of the primary fluid due to 
dissipation of turbulence energy at the interface between solid 
particles and the fluid. Assuming that the turbulence is in an 
equilibrium in which the rate of turbulence energy production 
is balanced by the rate of energy dissipation, 

Nomenclature 

a,b,c = model constants 
D = Van Driest damping function (D = 

l - e x p ( - j ' + /26)) 
dp = particle diameter 

Dp = pipe diameter 
/o = friction factor in clean fluid flow 

ff+p = friction factor in gas-solid suspension flow 
fp = increment of friction factor due to particles 
F r = Froude number (Fr = Um/^gDp) 
If = characteristic length scale for primary fluid 

flow 
lp = characteristic length scale for secondary fluid 

flow 
P = static pressure 
r = radial distance from the pipe axis 

Re = Reynolds number based on pipe diameter 
R •= pipe radius 
t* = Stokesian relaxation time {t* - psdp/l$ix) 
te = eddy life time 
ti = Lagrangian integral time scale 

u',v' = fluctuating velocity components in axial and 
radial directions of primary fluid 

up, v'p = fluctuating velocity components in axial and 
radial directions of secondary fluid 

U, V = ensemble averaged mean velocity components 
in axial and radial directions 

Uf = characteristic velocity scale for primary fluid 
flow 

Up = characteristic velocity scale for secondary 
fluid flow 

Um = axial mean velocity 
C/+ = non-dimensional axial velocity (U+ = U/U7) 
Ur = friction speed (UT = ^Tw/pf) 

x = axial coordinate 
y = distance from the pipe wall 

y+ = non-dimensional distance from the pipe wall 
0 + =yUT/Vfl) 

5.99 = boundary layer thickness 
e/, e/0, ep = kinematic eddy viscosity 

vjj vpl = kinematic laminar viscosity 
vel = effective kinematic laminar viscosity 
vet = effective kinematic eddy viscosity 
A = Eulerian integral length scale 
p = density 

TW = shear stress at the wall 
a, |S, K, X = model constants 

Pp = average density of secondary fluid defined by 
average mass of particles per unit volume 

Subscripts 

e 
f 
I 
0 
P 
s 

= 
= 
= 
= 
= 
= 

effective, or eddy 
primary fluid 
laminar 
of clean fluid 
particle laden, or secondary fluid 
solid 
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where c is a model constant, he proposed the following model 
for the eddy viscosity of the primary fluid. 

1 

( l + A . ) 
(11) 

Here, uf is some turbulent velocity scale and If is its length 
scale and ef is the kinematic eddy viscosity of clean fluid flow 
which is without suspension of solid particles. The validity of 
the above equations were restricted to a case when the 
Stokesian relaxation time t* is much shorter than that of an 
eddy life time te. 

The implicit assumption of the balance equation (10) is that 
the turbulence energy in the composite fluid is generated only 
by the primary fluid. However, Boothroyd [9] found by an 
experiment that the turbulence energy is substantially 
generated by the presence of the fluctuating solid particles and 
he explained that this is due to the extraction of large scale 
turbulence energy by solid particles from mean motion of the 
primary fluid. Denoting the rate of production of turbulence 
energy by the secondary fluid by ppuplp (dU/dr)2 where up is 
a velocity scale and lp is a length scale of the secondary fluid, 
the following balance equation may be more appropriate. 

- , (dUY 
p"u"lA-dV) 

, (dU\2
 / uj 

where the model constant c = 0.145 was taken from 
Crawford and Kays [10]. Using this equation, equation (11) is 
modified to 

Pp_ 

if_ I ^ Pf ef 
efo 

\ pf ef / 
(13) 

1 + 
Pf 

As for the eddy viscosity model of the clean fluid flow 
without suspension of solid particles, we used the con
ventional mixing length model with a damping function, 

% = K2(R-r)2D2 dU 

~d7 
for (#-/•)< 

X5< 

and 

efo=vflaReb for (R-r)> 
X5c 

(14) 

(15) 

where, D is the van Driest damping function and a = 0.005, b 
= 0.9, and K = 0.41 [10]. 

The boundary layer thickness Sgg is the distance from the 
wall at which mean velocity is 99 percent of the velocity on the 
axis. A model constant X is selected in such a way that an 
estimate by equation (14) is continuously matched with an 
estimate by equation (15) at their interface. 

2.3 Eddy Viscosity of Secondary Fluid. A difficult problem 
in the analysis of gas-solid suspension flow is to model the 
eddy viscosity of the secondary fluid. Frequently, it is 
assumed that the eddy viscosity of the secondary fluid is 
proportional to the eddy viscosity of the primary fluid and 
that this proportionality coefficient is a function of a ratio of 
the Stokesian relaxation time scale to Lagrangian integral 
time scale. 

According to Meek and Jones [11] the ratio between these 
eddy viscosities is given by, 

ef t* 
1 + 

where tt is the Lagrangian integral time scale. Hinze [12], Soo 
[13], O'Brien [14], and Peskin [15], have suggested more 
complex eddy viscosity models for the secondary fluid, 
theoretically or empirically. However, most of these models 
can be converted into a form, 

CP _ 
ef 

1 

•(f)' 
(17) 

1 + 

(19) 

where a and /3 are model constants. From the above models, a 
is found to be about unity and /3 has a value between 1 ~ 2. In 
this study, we fixed a = 1, and the value |3 = 2 was selected 
such that predicted pipe frictions are in best agreement with 
experiments. 

Corrsin [16] suggested that // may be estimated by, 

A 
t,= (18) 

"/ 
where A is an Eulerian integral length scale. Assuming that A 
~ If, Melville and Bray [4] obtained, 

If 
t,= — 

ef 
Since, in the core region of the pipe, / / ( » X{5.99) and tf are 

assumed to be constant for a given flow, the eddy viscosity of 
the secondary fluid is also taken to be constant there ac
cording to equation (17). Near the wall, however, equations 
(17), (19) and the Prandt l ' s mixing length theory together 

(12) predict that ep/ef would decrease as the wall comes closer. 
But, this is in contradiction to Soo's [17] theoretical and 
experimental result which states that ep/ef is nearly constant 
across the stream and is not significantly affected by the solid 
boundary . Accordingly, we assumed that ep/ef in the inner 
region has a constant value which is the same as that in the 
outer region. 

Substitution of equation (11) into equation (8) yields 

z% 

1 + - ^ -
ef 

Pp_ 

Pf 

1 + - ^ - ) 

(20) 
Pp_ 

Pf 
and substitution of equation (13) into equation (8) gives 

3/2 
(I + JILIE.) 
\ t, pf / 

:% 
ef pf 

V pj) 

(21) 

Thus, equation (20) or (21) gives an estimate for effective 
eddy viscosity as a function of solid-gas loading ratio and 
relative particle size. 

2.4 Laminar Kinematic Viscosity of Secondary Fluid. 
When a particle is suspended in a shear layer, the particle 
rotates due to a velocity difference between its upper surface 
and its lower surface. The fluid parcel over the upper surface 
moves down and that below the bottom surface goes up, each 
with its respective momentum. As a result, momentum 
transfer takes place between adjacent layers. The augmen
tation of the laminar momentum transfer, usually called the 
laminar viscosity of the secondary fluid, has been investigated 
by Happel [18], Frankel and Acrivos [19], Sather and Lee 
[20],,and many others. 

Most of them have discussed the Einstein formula, vp, oc Vfi 
* where $ is the volume fraction, which is now well conceived 
as a relatively good model for homogeneous shear flows with 
particles moving in the same direction and at the same speed 
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Fig. 1 Comparison of predicted friction factors with experimental 
data by Boothroyd [6] 

as that of the suspending fluid. Now, in our case, the situation 
is very different from such assumptions for the Einstein 
formula. We are interested in the momentum transfer 
mechanism mostly in the near wall region, where the mean 
rate of shear is very high and the particles cross the laminar 
sublayer region up and down due to the magnus lift, re-
entrainment mechanism and deposition of particles on the 
wall. These activity crossings of the particles must, of course, 
contribute to the momentum transfer more strongly than the 
particles in homogeneous parallel motion with the suspending 
fluid. Therefore it may not be expected that the Einstein 
formula has any reasonable validity in this intermittently 
turbulent region. Since the crossing motions are indirectly due 
to the turbulence process, vpl may depend on the surrounding 
turbulence. A first rough assumption to approximately 
estimate vpl is that the ratio vpl/<tp of the secondary fluid is 
similar to that of the primary suspending fluid, i.e., 

Then, equation (9) becomes, 

V tf pf ) 

(22) 

(23) 

The resulting model (23) is more inclusive than other models 
[18-20] in that vel is implicitly a function of the Reynolds 
number, the relative particle size and the solid-gas loading 
ratio, whereas in other models it is a function of the solid-gas 
loading ratio only. 

Barth's experiment 
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Fig. 2 Predicted variation of friction factor in pipe with Zn Powder of 
15 pm diameter as a function of Froude number (experimental data for 
fly ash of 1 jim are taken from Barth [21]) 
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Fig. 3 Prediction of friction factors as a function of relative particle 
size 

3 Computational Results and Discussion 

In order to examine the applicability of the above extended 
mixing length model to two-phase wall turbulence, com
putations were compared with Boothroyd's [6] experiments. 
He measured friction factors of air flows in smooth pipes 
which carry spherical zinc powders. Pipe diameters were 
0.0254m, 0.0508m, and 0.0762m and the particle sizes 
distributed over 0 ~40/<m with an average size of15/j.m. Solid-
gas loading ratios were between 0 to 10, and the Reynolds 
number based on the pipe diameter and the average velocity 
of the air was fixed to 53000 for all cases. 

Figure 1 compares predicted friction factors with these 
experimental data whose uncertainty is estimated to be within 
10 percent. The dotted curves were obtained by Melville and 
Bray's eddy viscosity model, i.e., equation (16) and (20), 
whereas, the solid curves were obtained by equations (17) and 
(21). In the computations, we assumed that the particle size is 
uniformly fixed to 15ftm and that the secondary fluid has 
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Fig. 5 Velocity profiles for various solid-gas loading ratios in 3 in. pipe 

constant density over all regions. In spite of these assump
tions, the predictions by our model agree well with the ex
perimental data. For more accurate calculation, we need to 
take into account the particle size distribution. In this case, 
the friction factor may be calculated b y / = J™ P{dp)f(dp, 
pp/pf)d(dp) where P(dp) is the particle size distribution 
function andf{dp, ppl pj) is from Fig. 3, for example. Using 
this method, we found that our result reported here for 
0.0762m pipe is over-predicted by about 3 percent and that for 
0.0254m pipe is under-predicted by about 5 percent. Since we 
do not expect that our turbulence model and many assump
tions we made can give any better accuracy than the above 
figures, we simply assumed the monodispersity of the par
ticles for convenience to show the validity of our approach. It 
is interesting to note from both the experiments and the 
predictions that, for the 0.0254m pipe, the friction factor first 
decreases and then increases with increasing Pplpj-
Boothroyd [6] reasoned that the presence of the solid particles 
interferes with the primary fluid in the transport process at 
low solid-gas loading. 

The predictions of friction factors in Fig. 1 are replotted in 
Fig. 2 in a different coordinate system proposed by Barth 
[21]. He measured friction factors in pipes carrying flying ash 
of uniform size of \\tm. He observed that the friction factor 
due to the particles is logarithmically linear with its Froude 
number as shown by a straight line fit to his experimental data 
in Fig. 2. The same dependence can be clearly seen in our 
predicted friction factors. 

Figure 3 shows the friction factors plotted as a function of 
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Fig. 6 Velocity profiles in wall coordinates in 1 in. pipe (o; ex
perimental data taken from Laufer [23]) 
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Fig. 7 Velocity profiles in wall coordinates in 3 in. pipe (o; ex
perimental data taken from Laufer [23]) 

relative particle size, which indicates that for a given Reynolds 
number and solid-gas loading ratio most of wall friction is 
predominantly caused by the presence of smaller particles. It 
is noted that an increase of pipe diameter (with the same 
particle size) has a similar effect on the friction factor as a 
decrease of particle size (in a pipe of same diameter). In other 
words, the ratio of particle size to pipe diameter instead of 
pipe diameter itself may be a more appropriate variable to 
represent the variation of friction factor. 

Time mean velocity profiles in 0.0254m and 0.0762m pipes 
are shown in Figs. 4 and 5 with the solid-gas loading ratio as a 
parameter. When this ratio increases, the velocity profiles 
become more rounded in the core region. The variation of the 
velocity profile is more significant for larger relative particle 
size as can be seen by comparing the two figures. This increase 
of the maximum velocity at the pipe center for higher solid-
gas loading ratio has been observed in Gill et al. [22] ex
periment. 

The above velocity profiles are nondimensionalized and 
plotted in U+ -y+ coordinates in Figs. 6 and 7. For 
reference, the velocity profile in a turbulent clean air flow was 
computed and compared with Laufer's [23] experimental data 
as shown in these figures. For 0.0254m pipe (i.e., for larger 
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relative particle size), dimensionless velocity increases with 
increasing loading ratio. On the other hand, for 0.0762m pipe 
(i.e., for smaller relative particle size), the dimensionless 
velocity decreases with increasing loading ratio. The opposite 
variation is the very reason for the different signs of slopes of 
the friction factors in 0.0254m and 0.0762m pipes for low 
solid-gas loading (Fig. 1). 

4 Conclusion 

The mixing length theory has been extended to calculate the 
turbulent pipe flow suspended with solid particles for low 
solid-gas loading ratios and small relative particle size. It was 
assumed that motion of the suspended particles as a whole 
could be considered to be that of the secondary fluid mixed 
with the primary fluid. Augmentation of turbulent transport 
of momentum due to the presence of the particles was 
modeled by assuming that the turbulent kinetic energy is 
generated by particle fluctuations as well as by the shear of the 
primary fluid. The resulting eddy viscosity model gave us 
satisfactory prediction of friction factors in the pipes. The 
virtual laminar kinematic viscosity of the secondary fluid is 
implicitly taken to be a function of the Reynolds number and 
the relative particle size as well as the solid-gas loading ratio, 
which differs from conventional models which are functions 
of only the solid-gas loading ratio. 

The following conclusions may be drawn about the two-
phase turbulent pipe flows, which are in agreement with 
experimental observations by previous workers. 

(/) Friction factor increases as the ratio of particle size to 
pipe diameter decreases. 

(ii) If the relative particle size is large and the solid-gas 
loading ratio is low, the friction factor can be smaller than 
that of particle-free flow. 

(Hi) Augmentation of the friction factor due to the particles 
is logarithmically linear with its Froude number. 
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Toward Attenuation of Self-
Sustained Oscillations of a 
Turbulent Jet Through a Cavity 
Several attenuation configurations are assessed, involving the following concepts: 
generating streamwise vorticity, dephasing the azimuthal coherence of the jet, and 
reducing rigidity of the jet separation edge. By proper design, effective attenuation 
of the discrete frequency components of the oscillation can be achieved. For cases 
where there is not complete attenuation, the phase condition corresponding to 
maximum relative amplitude of the oscillation is maintained, the disturbance phase 
speed is essentially unaltered, and there is a proportional reduction in amplitude 
along the jet, including the initial fluctuation level at separation. 

Introduction 

Self-sustained oscillations of wakes, mixing layers, and jets 
are well-known for both nonimpinging and impinging flow 
configurations having laminar or turbulent boundary layers 
at separation. The coherence of such oscillations can be 
substantially enhanced by interaction of the inherent in
stability of the separated shear layer with a resonant acoustic 
or free-surface mode of the flow system (Rockwell 1982 [9]). 
Although much effort has been devoted to characterizing the 
nature of these oscillatory flows, their attenuation deserves in-
depth consideration (Naudascher and Rockwell 1980 [7]). The 
primary objective of this investigation is to assess several 
attenuation concepts for a basic type of separated flow oc
curring in a variety of internal flow systems: turbulent flow 
through a cavity enhanced by resonant modes of the approach 
flow pipe(s) (Rockwell and Schachenmann 1980, 1982). In 
practice, the separated flow zone occurs at a tee or bend in the 
duct/pipe, at a valve, etc.. There have been few investigations 
related to mitigation of these oscillations at their source, 
namely the process of flow separation; those techniques that 
have been employed will be discussed below in the appropriate 
category of attenuation. 

Experimental System 

The experimental apparatus involved a long pipe of length / 
and diameter D terminated by an axisymmetric cavity of 
length L (see Fig. 1 and Rockwell and Schachenmann 1982 
[10]). For the experiments described here, the Reynolds 
number of the flow at the end of the pipe was 2061 < Re8() = 
U0d0/v < 3805 (U0 = centerline velocity d0 - momentum 
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thickness). Since l/D- 82.3, the flow was fully turbulent at 
the cavity inlet; mean and fluctuating velocity distributions 
agreed well with previous studies of fully-developed turbulent 
flow (Laufer 1953 [5]). All experiments were run at a cavity 
length L/d0 = 36.03, corresponding to L/D =1.8. 

As described by Rockwell and Schachenmann (1980, 1982 
[10, 11]), the inherent instability of the separated shear layer 
through the cavity is enhanced by the acoustic modes of the 
upstream pipe, yielding strongly coherent oscillations. When 
U0 or L is varied, there are variations in frequency and 
amplitude of the oscillation, with jumps in frequency oc
curring at minimum oscillation amplitude; consequently a 
number of "modes" of oscillation are negotiated, with 
maximum amplitude occurring at about the middle of each 
mode. The mode number corresponds to the acoustic mode of 
the organ-pipe resonance. In this investigation, two typical 
modes of oscillation (III, IV) will be considered, allowing 
examination of attenuator effectiveness over a range of 
velocity. 

In characterizing oscillation frequency and amplitude, hot 
wire measurements were taken along the centerline of the 
cavity (ue) and pressure measurements were acquired within 
the cavity (Pb). Since the acoustic wavelength (X0) was much 
longer than the cavity length (L), the pressure amplitude Pb 

was representative of that throughout the cavity. 
In order to determine the spectral content of the oscillation, 

an Ortec lock-in amplifier (with a vector computer module) 
was driven by a frequency ramp generator through its 
reference channel, while the pressure or velocity fluctuation 
of interest was fed into the signal channel. The resultant 
spectral peak(s) gave the amplitude(s) of the organized 
oscillation. 

To provide a reference case for all attenuators, experiments 
were run without the attenuator insert, indicated by the 
dashed lines in Fig. 1. Then various attenuators were 
examined, continuously checking the no-attenuator reference 
conditions. 
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Types of Attenuators 
Figure 2 depicts the various categories of attenuators, 

classified as vortex generators, azimuthal dephasors, and 
compliant boundaries.2 

The principle of the vortex generators involves production 
of streamwise vorticity, having a vector orientation or
thogonal to the mean vorticity of the separating boundary 
layer, thereby destroying the spanwise or azimuthal coherence 
of the primary vortices. As discussed by Kuethe (1972 [4]), in 
a study of generators at the trailing edge of an airfoil, it is 
possible to distinguish counter-and corotating regions of 
streamwise vorticity, depending upon the spacing between 
generators, all of which are parallel to each other and inclined 
at the same angle of attack. Keller and Escudier (1979 [3]) 
show a strong influence of incidence angle of a row of 
generators (all having the same inclination) in attenuating 
cavity oscillations. Bradbury and Khadem (1975 [1]) and 
Pannu and Johannesen (1976 [8]) have demonstrated that 
protruding tabs at the exit of, and notches at the lip of, an 

- u e « > 

-IMPINGEMENT 
ORIFICE 

Fig. 1 Schematic of pipeline-cavity system showing location of 
typical attenuator at entrance of cavity 

axisymmetric jet nozzle can significantly affect the time mean 
and total turbulence intensity distributions of the jet. To date, 
there has been no systematic investigation of the effect of 
vortex generator configuration, spacing, inclination angle, 
and height, all relative to the characteristic boundary layer 
momentum thickness (9g) at separation. 

With regard to the classes of slotted and asymmetric 
boundaries depicted in Fig. 2, the basic concept involves 
decreasing the azimuthal, or spanwise, coherence of the 
separating shear layer, as well as dephasing the coherence of 
the pressure perturbations incident upon the separation edge 
(Rockwell 1982 [9]). To be sure, there will be generation of 
streamwise vorticity as well, evident in the notched trailing 
edge leading to formation of a mixing layer (Breidenthal 1980 
[2]); this vorticity arises from spanwise dephasing of the 
separation process. 

In respect of the compliant boundary configuration, the 
mechanism involves decreasing the rigidity of the separation 
edge and mitigating the conversion process (most effective at 
a rigid trailing edge) between disturbances incident upon the 
edge and vorticity fluctuations in the shear layer (Rockwell 
1982 [9]). If the compliant boundary has streamwise slits (Fig. 
2), the mechanism of azimuthal dephasing can also be ex
pected to play a significant role. 

Vortex generators and azimuthal dephasors were 
manufactured from 0.05 mm thick tin sheets, while the 
compliant boundaries were cut from highly flexible, 0.05 mm 
thick, plastic (used for manufacture of "GLAD" lunch bags). 
For purposes of illustrating the technique of mounting the 
attenuators at the exit of the long pipe, photographs of typical 
attenuators inserted in a plexiglas duct are shown in Fig. 3. 

Configuration II of the vortex generators, as well as the general concepts of 
the slotted and asymmetric boundaries, were suggested and designed by Prof. 
M. V. Morkovin, who stimulated this research program. 

V O R T E X GENERATORS SLOTTED ASYMMETRIC 
BOUNDARY BOUNDARY C O M P L I A N T B O U N D A R I E S 

- * v w ^ ) 

•5 

(O (D ( C O N T I N U O U S ) ( W I T H S L I T S ) 

Fig. 2 Attenuator configurations: vortex generators, slotted boundary; 
asymmetric boundary; and compliant boundaries 

Nomenclature 

ii = root-mean-square velocity fluctuation in cavity 
on centerline of jet 

U0 = time-averaged centerline velocity in pipe at en
trance of cavity 

/ = frequency 
Pi, s = root-mean-square pressure taken in cavity at x = 0 

(see Fig. 1) 
A<t> = 4>,-, - 4>a0 Phase (difference) angle (reference $ s ) 
60 = boundary layer momentum thickness at 

separation 
L = length of cavity 

m/s 

D 
A 

O 

D 

V 

o 

= meters per second 
= inner diameter of cavity 
= inner diameter of pipe (D = 2R) 
= 2nd mode (90 Hz) "] 
= 3rd mode (135 Hz) 
= 4th mode (179 Hz) 
= 5th mode (226 Hz) 
= Helmholtz mode (250 Hz) _, 

Oscillation modes 
with attenuators 

® = 3rd-fnode(135Hz) "1 
• = 4th mode (179 Hz) >- Oscillation modes 
• = 5th mode (226 Hz) J without attenuators 
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Fig. 3 Plots of representative attenuators mounted within exit of
plexiglas pipe: vortex generators·l; slotted boundary; and asymmetric
boundary
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Fig. 5(a) Effect of vortex generators on spectra of velocity flue·
tuatlons (lirms (f)ldf), taken along centerline of jet (rlR =0), at velocities
corresponding to maximum amplitude response without generators (U
= 15.40 mls and 20.40 mls) Re80 = 2442,3234, LI90 = 36.03. wI: with
generators; wlO; without generators.

.
l

Fig. 5(b) Variation of phase (<I>a - <l>ao) and amplllude (lilU) of velocity
fluctuation at centerline of jet (rlR = 0) for various size of vortex
gene'rators·1 at velocity of maximum amplitude nisponse. Re80 = 3234;
LI90 = 36.03.
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Fig. 4 Pressure amplitude In cavity (J5brms ) versus velocity (U) as a
function of size (h) of vortex generators·1 2061 " Re,o ,,3805; LI90 =
36.03 .

Vortex Generators. Figure 4 depicts the. effect of at
tenuator height on the amplitude of' the· organized pressure

oscillation for two modes of oscillation, the peak amplitude in
the fourth mode being considerably higher than the third
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Fig. 6 Pressure amplitude in cavity. (Pb ) versus velocity (U) as a 

VORTEX 
GENERATORS-II 

function of size (h) of vortex generators-ll. 2061 < Be,0 s 3805; LI60 = F i g . 8 presSure amplitude in cavity (P„ ) versus velocity (U) as a 
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Fig. 7 Pressure amplitude In cavity (Pb ) versus velocity (U) as a 
function of pitch (t) of vortex generators-ll. 2061 s Re„„ < 3805; Utn = 
36.03. ° 

mode (at U = 20.4 m/s). (As discussed by Rockwell and 
Schachenmann (1982 [10]), the damping of each acoustic 

36.03. 

mode varied significantly with mode number.) Although 
generator height h/d0 = 1.08 has little effect, increasing the 
height to h/d0 = 2.01 attenuated the oscillation. (All 
dimensions in the inset are in mm; note that the vertical axis is 
broken to save space.) 

The effect of the attenuator on the streamwise evolution of 
the velocity spectra is shown in Fig. 5(a). For the oscillation in 
mode III (U = 15.40 m/s), the attenuator (a = 3 mm; h/d0 = 
1.29) completely eradicates any sign of organized oscillation 
in velocity spectra along the entire streamwise extent of the jet 
(i.e., from cavity inlet {x = 0) to outlet (x = L)). However, 
for the stronger oscillation of the fourth mode (U = 20.40 
m/s), peak amplitudes of the spectra are proportionately 
decreased, rather than being completely attenuated. 

This behavior prompted a detailed study of the effect of 
attenuator height on streamwise distributions of amplitude 
and phase of the organized velocity fluctuation. Shown in Fig. 
5(b) is the downward shifting of the amplitude distributions 
with increased height of the generator. However, the 
streamwise distributions of phase are nearly coincident for all 
values of generator height, and the overall phase difference of 
2T is maintained. This means that the phase speed of the 
disturbance along the centerline of the jet and the 2TT phase 
criterion for maximum relative amplitude are insignificantly 
affected by attenuation of absolute amplitude of oscillations 
via the vortex generator. 

The fact that vortex generators of configuration II (see Fig. 
2) are as effective as those of configuration I (Fig. 4) is 
evidenced in Fig. 6. Nearly complete attenuation is achieved 
with an attenuator height of only h/60 =2.31. 

The effect of pitch (t) of the vortex generators is depicted in 
Fig. 7. Nearly complete attenuation of the mode IV oscillation 
can be achieved with t=irD/3, though there is onset of 
oscillation energy in mode V at the expense of attenuating 
mode IV! Residual energy of mode V is, in fact, evident for 
higher values of pitch where attenuation is more complete. 
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Fig. 9 Pressure amplitude in cavity (Pb ) versus velocity (U) for 
continuous boundary and compliant boundary with slits. 2061 < fie,, 
< 3805; LIS0 = 36.03. ° 

The importance of angle of inclination of the attenuator is 
high-lighted in Fig. 8, showing little change in amplitude for 
a= 15 deg, but a drastic decrease in amplitude for a = 30 deg. 
Also evident at a = 30 deg is the shifting of the amplitude peak 
of mode IV to lower velocity and onset of mode V oscillations 
at higher values of velocity. 

Compliant Boundaries: Effectiveness of the compliant 
boundary, extending a distance L' downstream of the cavity 
lip, is depicted in Figs. 9 and 10. For the case of a continuous 
boundary (having no slits; see Fig. 9), the modes of oscillation 
are shifted to higher values, and the peak amplitudes in
creased. However, in the case of the compliant boundary with 
slits, substantial attenuation is achieved, as depicted at the 
bottom of Fig. 9. The effect of length of the slitted compliant 
boundary is given in Fig. 10. Substantial attenuation can be 
achieved with a boundary length of L'/d0 = 13.51; the effect 
of a short length (L'/dQ = 4.50) is to shift the peak am
plitudes to lower velocity. It should be noted that, for the 
peak amplitudes of oscillation in absence of an attenuator, the 
wavelength of the jet instability (X) was 36 momentum 
thicknesses (0O) long, i.e., X/0O = 36. Consequently, for 
L '/d0 = 13.5 corresponding to effective attenuation, L /\ — 
1/3. 

Slotted Boundary. The effect of a slotted separation 
boundary is depicted in Fig. 11. Though there is a tendency to 
shift the peak amplitudes to lower velocity, it is evident that 
little attenuation can be achieved. The explanation of this 
ineffectiveness may lie in the mixing layer visualization of 
Breidenthal (1980 [2]), who found that the three-
dimensionality induced by spanwise dephasing at a slotted 
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Fig. 10 Pressure amplitude in cavity (Pb ) versus velocity (U) as a 
function of length (L') of compliant boundary with slits. 2061 < Ree < 
3805; LI0o = 36.03. ° 

trailing edge did not persist; there was rapid recovery to two-
dimensional vortical structures within a short streamwise 
distance. 

Asymmetric Boundary. In the case of the nonaxisym-
metric configuration (see Fig. 12), a substantial reduction in 
peak amplitude is possible only for relatively long lengths, L' 
= 2L/3. At shorter lengths, i.e., L' = 1/3, there is sub
stantial shift of peak amplitudes to lower values of velocity 
and inducement of large amplitudes at a higher mode (V). 
Consequently, both types of these separation boundaries are 
relatively ineffective. 

Conclusions 

Of the various categories of attenuators, the most effective 
are vortex generators and compliant boundaries: 

(a) Vortex generators having either the same angle, or 
alternating angle, of incidence with respect to the mean flow 
were found to be equally effective. The height of the 
generators should be (at least) two momentum thicknesses of 
the separating boundary layer, their angle of incidence at least 
30 deg, and their pitch no more than one-sixth the jet cir
cumference. 

(Jb) Compliant boundaries involving highly flexible ex
tensions of the jet nozzle exit are most effective when slitted in 
the streamwise direction. The length of these boundaries 
should be at least one-third wavelength of the developing 
instability wave of the jet. 
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Fig. 11 Pressure amplitude in cavity (Pb ) versus velocity (U) as a 
function of length (L) of slotted boundary; 2061 < /?e9 s' 3805; u/(i0 = 
36.03. ° 

Attenuation of the amplitude of oscillation is associated 
with a proportional reduction of velocity amplitude along the 
entire streamwise extent of the jet, including the amplitude 
level at the separation edge. Regardless of the degree of at
tenuation (excepting complete attenuation), the phase speed 
of the jet disturbance remains essentially unaltered; 
moreover, the condition of 2ir phase difference between 
separation and impingement occurring at maximum relative 
amplitude of oscillation, is always maintained. 

Depending upon the oscillation technique employed, there 
is the possibility that attenuation of a given mode of 
oscillation will lead to the onset of a higher mode. Although 
this is not a significant problem for those attenuators that are 
highly effective, marginally effective attenuators can, in some 
cases, yield a higher amplitude at the same or a higher mode; 
moreover, they may shift the peak amplitude of oscillation to 
a lower value of velocity. 
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The Collapse of a Gas Bubble 
Attached to a Solid Wall by a 
Shock Wave and the Induced 
Impact Pressure 
An experimental study was made on the collapse of a gas bubble attached to a solid 
wall by a shock wave. The collapse process of the bubble and the induced impact 
wall pressure were measured simultaneously by means of a high speed camera and a 
pressure transducer, respectively. Consequently, it was found that the impact wall 
pressure was very sensitive to the factors such as the bubble size, the strength of 
shock wave and the distance from the origin of shock wave to the gas bubble, and in 
some cases it became larger than that generated by a shock wave directly impinging 
on the solid wall without a gas bubble. 

Introduction 

It is well known that cavitation damage is attributed 
predominantly to an impact pressure produced by a collapsing 
bubble. In order to clarify the mechanism of the impact 
pressure generation, many works were done on bubble 
dynamics [1-30]. As a result of the previous works, two 
factors were found to be predominant in generating the 
impact pressure. One is a liquid jet developed from the in
stability of a collapsing bubble, and the other is a shock wave 
generated at the instant of the rebound of a bubble. When a 
bubble locates both on and very close to a solid wall, it 
collapses nonspherically and a microjet flowing toward the 
solid wall is formed. This fact was confirmed experimentally 
as well as theoretically, so it was supposed that the microjet 
would mainly contribute to an impulsive force acting on the 
solid wall. Recently Fujikawa and Akamatsu [13, 14] showed 
that the presence of a solid boundary did not inhibit the shock 
wave radiation and an impulsive pressure accompanying the 
bubble collapse was caused by the impact of shock waves, and 
the jet impingement did not produce any detectable effects. 
Shima et al. [15] reconfirmed the generation of shock waves 
during the rebound of spark bubbles, and observed the 
coexistence of a shock wave and a liquid jet in the case where 
a bubble almost touched a solid wall at its maximum ex
pansion. The experimental evidence like the generation of 
shock waves is of significance to investigate the cavitation 
phenomena. In fact in actual cavitation such as flow 
cavitation and acoustic cavitation, it is possible that a shock 
wave generated from one bubble acts on another nearby 
bubble in collapsing phase. Therefore it is important to clarify 
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the interactions between bubbles and also between a bubble 
and a shock wave. Nevertheless only a few papers were 
reported to this problem, for example, as to the interactions 
between a bubble and a shock wave in the references [7, 8, 20] 
and between bubbles in the reference [10]. Tulin [20] 
theoretically suggested that the formation of ultra-jet [31] on 
cavity surfaces by impinging shocks might be an important 
mechanism in the cavitation damage. On the other hand, 
Smith and Mesler [10] experimentally investigated the in
teraction of a growing and collapsing vapor bubble with a 
neighbouring gas bubble. They concluded that the transfer of 
energy from the vapor bubble to the gas bubble and the 
repulsion of the vapor bubble by the gas bubble were im
portant factors in the protection of the boundary. However, 
they did not refer to the interaction of the gas bubble with a 
shock wave produced by the initiation of the vapor bubble. 
Further, we have never seen the systematic investigation with 
respect to the impact wall pressure resulted from the in
teraction between a bubble and a shock wave. 

In the present paper, therefore, an experimental study is 
made on the collapse of a single gas bubble attached to a solid 
wall by a shock wave. To simulate a shock wave generated at 
the instant of the re-expansion of a bubble, one generated at 
the instant of the spark discharge in water is used here. The 
collapse of the gas bubble and the induced impact wall 
pressure are measured simultaneously by means of an Imacon 
high speed camera and a pressure transducer, respectively. 
Consequently, the results obtained here are as follows; The 
collapse of an attached gas bubble by a shock wave is very 
intensive. When a shock wave impinges on the surface of a gas 
bubble from different direction with the axis of symmetry of 
the bubble, an oblique liquid jet may be formed. The impact 
wall pressure is strongly depending on the bubble size, the 
shock strength and the distance from the origin of shock wave 
to the gas bubble. According to the combinations of these 
factors, a gas bubble acts as either the energy absorber from a 
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Pressure Tronsducer

Gas Bubtie

Fig. 3 Oscilloscope trace of the Impact wall pressure (Ve =6.0 /(V.
L=5.0mm)
(8) Without a gas bubble
(b) With a gas bubble(R. = 0.6 mm, Ic/R. =0.70)

Spark Bubble 1l Tungsten Electrodes

Fig. 2 Detail of the test section

was used as a light source for the Imacon camera. Three kinds
of a framing rate of 105 frames/s, 2 X 105 frames/s and 106

frames/s were used for photographing in this experiment.
Output signals from the pressure transducer were displayed
on an oscilloscope or an X- Y recorder through a transient
recorder (Iwatsu DM 901). A discharge current appearing at
the spark bubble initiation was used as trigger signals of
photographing the bubbles and of measuring the pressure
histories. The radius R e of an equivalent sphere having the
same volume of an attached gas bubble and the center of
gravity Ie of the gas bubble measured from the solid wall were

shock wave or the source of more intensive impact wall
pressure than one generated by a shock wave directly im
pinging on the solid wall without a gas bubble.

Fig. 1 Schematic diagram of the experimental apparatus

Experimental Equipment and Methods

A schematic diagram of the experimental set up is shown in
Fig. 1. A 300 mm x 240 mm x 240 mm stainless steel bubble
chamber with 100 mm diameter observation windows was
used, and tap water at room temperature was filled in it. At
the center of the chamber a pair of tungsten electrodes of 1
mm diameter which was utilized to generate a shock wave
impinging on a gas bubble was placed facing each other. A
condenser bank of C = 0.5 j1F and variable charging voltage
Ve was used here. A solid lucite wall of 40 mm diameter was
settled above and parallel to the axis of the electrodes. A Swiss
Kistler Model 603 B quartz transducer was mounted flush to
the solid surface. The transducer has a diameter of 5.55 mm, a
resonant frequency of 400 kHz with a rise time of about I p.s
to step changes in pressure and is capable of measuring
pressure up to 25 MPa with a resolution of 0.5 kPa.

A gas bubble (i.e., an air bubble) was carefully placed on
the surface of the pressure transducer by means of a syringe as
shown in Fig. 2. Here L is taken as the distance between the
origi~()fa shock wave and the solid wall. The collapse process
of the gas bubble was observed by using an Imacon high speed
camera (John Hadland Type 7(0). An Argon-ion laser
equipped with a 1 msec opening duration mechanical shutter

____ Nomenclature

Coo
D

H*
H*a
Ie

L

sound velocity of liquid
base diameter of a gas
bubble attached to a solid
wall
initial value of D
DIDo
impulse
height of an attached gas
bubble
initial value of H
height of a spark bubble
(see Fig. 2)
HIHo
HaiL
center of gravity of a gas
bubble measured from a
solid wall
distance from an origin of
a shock wave to a solid
wall

Po

PG.max

Pr=R
Ps

Ps,a

Poo,o

R;;,o
S

initial pressure inside a gas
bubble
maximum impact wall
pressure
pressure at bubble wall
peak pressure of a shock
wave
peak pressure of a shock
wave through a gas bubble
pressure in liquid at in
finity
ambient pressure around a
gas bubble .
bubble radius
equivalent bubble radius
spark bubble radius with
out a gas bubble
RaolL
position of a gas bubble

t
Te

Te,G

Te,Goo

l'
e

8
Poo

(J

time
Rayleigh's collapse time
collapse time of an at
tached gas bubble
collapse time of a gas
bubble far from a solid
wall
charging voltage
pulse width of an impact
wall pressure
pulse width of a shock
wave received on a solid
wall
polytropic index
angle
tan -I (SIL)
liquid density at infinity
surface tension of liquid
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Fig. 6 Variations of nondimensional quantities for both a gas bubble
and 8 spark bubble with time corresponding to Figs. 5(a) and (b)

Collapse of Attached Gas Bubbles by Shock Waves and
Interaction of Gas Bubbles With Spark Bubbles. Figures 5(a)
and (b) show typical photographs of the interaction between
bubbles for Ve = 6.0 k V and L = 5 mm. The framing rate of
2 x 105 framesls is used for Fig. 5(a) where R e = 0.9 mm,
lelRe = 0.71 and that of 105frames/s used for Fig. 5(b)
where R e = 1.9 mm, leiR e = 0.56. The solid wall can be seen
at the top of each frame, and gas bubbles are attaching to that
wall due to the buoyancy. Figure 5(a) shows the case where
the interaction between bubbles is small, so the gas bubble is
intensively collapsing. The collapse time of this' bubble with
R e = 0.9 mm was measured as Te,o = 16.9 J-LS. Therefore, it
is immediately understood that the collapse process of a gas
bubble by a shock wave is very intensive, since in general the
collapse time of a spherical bubble with radius of I mm is
about 100 p,s under the stepwise change in pressure of 0.1
MPa. At the final stage of the bubble collapse, the radial
velocity at the base of the gas bubble attains to the value of
about 30 mis, while the collapsing velocity at the top side of
its bubble is extremely rapid and exceeds 200 m/s. The for
mation of a liquid jet during the bubble collapse can be
conjectured from the observation of a counterjet which is
detected in sixth frame in Fig. 5(a). Therefore the latter value
should be much larger than that estimated here, because the
liquid jet is accelerated. By the way, Plesset and Chapman
[21] calculated a maximum jet velocity of 130 mls in the case
where an initially spherical vapor cavity in contact with a solid
boundary collapsed under the stepwise change in pressure of
0.1 MPa.

On the other hand, Fig. 5(b) shows the case wherethe in
teraction between bubbles becomes significant. The collapse
time of the gas bubble with R e = 1.9 mm was measured as
Te,o = 47.3 p,s which was longer than that for R e = 0.9 mm
due to the interaction between bubbles. From this figure it can
be seen that the surface of the spark bubble closest to the solid
wall is attracted along the flowing of the liquid jet which is
formed during the collapse of the gas bubble, then it tends to
flatten during the rebound of the gas bubble. In both cases of
Figs: 5(a) and (b), it is clearly seen that the radial flows at the
bases of the gas bubbles rapidly spread outward after the
rebound. Figure 6 shows the variations of nondimensional
quantities for both the gas and spark bubbles with time
corresponding to Figs. 5(a) and (b). In this figure the non-

&'
6 10 t----'r.:,....,.,...---t---------l

If'

numerically determined by measuring points on the bubble
surface from a stationary bubble photograph and assuming
the gas bubble to be axial symmetry.

Figures 3(a) and (b) show examples of the pressure trace
received on the solid wall without and with a gas bubble. In
the case without a gas bubble, the peak pressure and the pulse
width are defined as Ps and w" respectively. Figure 4 shows
the variation of Ps with L for various values of Ve . It is
clearly seen that Ps is inversely proportional to distance L for
each charging voltage Ve . This fact indicates that the shock
wave spherically propagates in water. The shock wave velocity
was measured as 1460 m/s.

L [mm]
Fig. 4 Variation 01 the peak pressure of a shock wave Ps with the
distance L

t-----i .5mm

Flg.5 Collapse of an attached gas bubble by a shock wave (Ve =6.0
kV,L=5.0mm,S=0)
(a) Re = 0.9 mm, le'R& = 0.71; 2 x 105 framesls, frame Interval 5/1s,
exposure 1 /ls/frame
(b) Re = 1.9 mm, le'Re = 0.56; 105 frames/s, frame interval 10 /IS, ex·
posure 2 ps/frame

Results and Discussion

The study is focussed at first on the S :::: 0 case where a gas
bubble situates on almost the center ofthe pressure transducer
and a shock wave impinges' on the top side of the bubble
surface from the direction of the axis of symmetry of the
bubble. Secondly the experiment is advanced to the S :\= 0 case
and the influence of the position of a gas bubble S on the
impact wall pressure is investigated. .
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dimensional radii of spark bubbles without gas bubbles, 
R*. o( = ̂ u, Q/L), are indicated by hatching with including five 
trials. For Re = 0.9 mm the interaction between bubbles is so 
weak that H* lies in the range of R*y 0. On the contrary, for Re 

= 1.9 mm, H* deviates from R*_ 0 at the initial stage of the 
collapse due to the attractive effect between them. Two 
groups of values in pairs are also seen in the figure. A pair of 
earlier times corresponds to the arriving times of shock waves 
from sources to gas bubbles and another pair of later times 
corresponds to the collapse times of gas bubbles measured 
from spark initiations, and chained lines with one dot and 
with two dots indicate for the cases of Re = 0.9 mm and Re = 
1.9 mm, respectively. 

Collapse Times of Gas Bubbles Attached to a Solid Wall by 
Shock Waves. As mentioned in the preceding section, the 
collapse of a bubble by a shock wave is so intensive that the 
collapse time of it will become shorter. 

For the case of the stepwise change in pressure (p„, o ^ P « . 
Ap=pt„—pa,i o = const.), in general,-the collapse time of a 
spherical bubble with radius of Re far from a solid wall, Tc, 
is given by Rayleigh [16] as follows: 

(1) Tr = 0.9l5R,J~ 
Ap 

This relation is fulfilled also for a rectangular pressure wave 
with a pulse duration of ts as long as the condition of ts > Tc 

is satisfied. A shock wave, however, has a very short pulse 
duration in general, say ts << Tc. Therefore the collapse 
time of a bubble far from a solid wall by a shock wave always 
satisfies the relation of Tc, G» > Tc • 

We now consider the theoretical treatment. Assuming that 
the pressure change surrounding the bubble is uniform over 
all the bubble surface, the collapse time Tc,Gm can be 
determined from the following equation [18]. 

— )p«,(t)-pr^ + —-{pa,-pr=]i)\=0 (2) 

where 

P'=«=P°{-R) ~R (3) 

In the above expression, R is the bubble radius, Re the initial 
bubble radius, y the polytropic index, a the surface tension of 
the liquid, p0(=P<», o + 2a/Re) the initial pressure inside the 
bubble, and C„, p«, and p„ i 0 are the sound velocity, the 
density and the pressure in the liquid at infinity, respectively. 
The pressure change resulted from a shock wave is introduced 
into the pressure term p „ (/) in equation (2). In numerical 
calculations the time dependence of the shock pressure was 
approximated by a rectangular or triangular impulse by using 
the impulse of shock pressure F, (= \'0 pdt) obtained ex
perimentally. On the other hand, in the case of the presence of 
boundaries like a solid wall and a free surface, the motion of a 
bubble is strongly affected by these boundaries, for example, 
the collapse time of a bubble near a solid wall becomes longer. 
As for this matter there are some theoretical studies such as 
obtained by Rattray [17] using a perturbation method and 
Sato and Shima [28] using a variational method in which the 
surface tension is included. Consequently, it was confirmed 
that the effect of a solid wall on the collapse time was suf
ficiently satisfied by a linear equation with Re/lc in the range 
of 0 ^ Re/lc = 1 [30]. Supposing the previous relation to be 
extrapolated for Re/lc > 1, and using it as a correcting factor 
about the effect of the solid wall, we finally obtain the 
collapse time as follows: 
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,4 . , 

I 5 0 

h-S 40 
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O 0 . 5 p.F, Ve = 6.0 kV 
L-5.0 mm 

o Rectangular Impulse 
a Triangular Impulse 

0 10 20 30 40 50 60 70 

Teeth. |>S] 
Fig. 7 Comparison between the theory and the experiment with 
respect to T C G (Vc = 6.0 kV, L = 5.0 mm) 
o Rectangular impulse, 
A Triangular impulse 

Tc, aih ~ 'Aiv Tc, Go 
where 

Vv = 1+0.19 Re 
lc 

(4) 

(5) 

Figure 7 shows the comparison in the collapse times obtained 
theoretically with the experimental values. We can see the 
reasonable agreement between them. As the gas bubbles 
increase in size, however, the discrepancy between both the 
results tends to be large, since the interaction between bubbles 
and the nonuniformity of the pressure over all the surface of a 
gas bubble become remarkable. 

Impact Pressure Generated by a Collapsing Gas Bubble. It 
is of interest to examine the impact wall pressure induced by a 
collapsing gas bubble in connection with the cavitation 
damage. 

As seen in Fig. 3(b), in general, two peaks appear in the 
impact wall pressure history in the presence of a gas bubble. 
The first peak pressure is contributed from a shock wave 
through an attached gas bubble and the second one con
tributed from a collapsing gas bubble, which are defined as 
Ps.a a n d p G m a x , respectively. 

The variations of pGi max/ps and ps,tt/ps for various 
equivalent radii Re are shown in Fig. 8. Here ps is the peak 
pressure of a shock wave received on the solid wall without a 
gas bubble, and three cases for ps are discussed in the figure, 
that is, A = 5.26 MPa (Kc = 6 kV), 2.34 MPa (Vc = 3kF) 
and 1.44 MPa (Vc = 2 kV). If pa, max < Ps, a gas bubble 
seems to be energy absorber from a shock wave, while if pG, 
max > Pst o n e t° D e source of more intensive impact pressure. 
From the figure, we can readily see the existence of the region 

for/>o, max >Ps-
The tendency of pG max curve is strongly depending upon 

the peak pressure of shock wave as well as the size of gas 
bubble. In the case where the shock wave has a relatively 
small peak pressure, no intensive compression of the gas 
inside the bubble occurs due to the small amount of energy 
transferred to the gas bubble. When ps is smaller, there is a 
region where pG,max is smaller than ps for all Re. On the 
contrary, when/^ is larger, pGt 

at a certain point of Re. This means that/7Gmax 

decreasing Re for smaller gas 

-Re curve has a maximum 
decreases with 

bubbles than those 
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Fig. 11 Variation of the maximum impact waif pressure PG,max with
the distance L (Ve = 6.0 kV. R e = 0.9 mm)
o PG,max' '. Ps,a
_____ -Ps (without gas bubble)

L [mm]

fact is no doubt that the impact wall pressure measured here
will be underestimated compared with the real value of it in
particular when the bubble becomes smaller in size.· In the
same figure. further. it is found that when R e approaches to
zero, Ps a is asymptotic to the s!lOck pressure. Le., Ps. and that
Ps, a is' monotonously decreasing. independent of Ps' with
increasing R e • This experimental evidence indicates that the
energy absorbed by the gas bubble increases with bubble-size
increase and this is obviously seen from Fig. 9.

Figure 9 shows the impulse Ft/Ft,s which increases
monotonously with increasing R e • In the same figure. the
nondimensional pulse width of the impact wall pressure, i.e.•
ws/w, is also plotted. The pulse width of PO,max at the
maximum almost corresponds with one of the shock pressure
received on the solid wall without a gas bubble, that is ws/w
== 1. For smaller gas bubbles than those corresponding to the
maximum of Po, max. the relation of w < Ws is satisfied and
vice versa. In the region w> ws where the interaction between
bubbles becomes significant in proportion to increasing R e •

the liquid jet should be predominant in generating the impact

10

Fig. 10 Shock wave generated at the instant of the rebound of a gas
bubble (Ve = 7.0 kV. L = 5.0 mm, Re = 0.6 mm. lelRe = 0.45; 106

framesls, frame interval 1/'s. exposure 0.2/,slframe)

C=0.5j-LF, Vc =6.0 kV
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Fig. 9 Variations of the nondimensional pulse width wsfw and the
nondimensional impulse FtfFt,s with the equivalent radii Re (L=5.0
mm)

1.0 2.0 3.0
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Fig. 8 Variations of the maximum impact waif pressure PG,max fps and
the first peak pressure Ps,s fps with the equivalent radii Re
(L=5.0mm)O.d.[]PG.maxfPs; ••••• Psafps; 0 •• Ve=6.0
kV(ps=5.26MPa); d •• Ve =3.0 kV(Ps=2.34 MPa); [] •• Ve =2.0
kV(ps = 1.44 MPa)

3.0

corresponding to the maximum ofPo, max' However, it is well
known that for the bubble collapse in water under the same
conditions the peak pressure produced at the bubble surface
increases with decreasing the bubble radius because of the
effect of surface tension [23, 24. 29]. The difference between
the result in Fig. 8 and the well-known fact is to be resulted
from the following. In the present study the distance L and the
shock strength Ps are kept with constants in order to examine
the effect of the existence of a gas bubble on Po, max' Since the
height of an attached gas bubble. H, is proportional to the
bubble size Reo the shock pressure just arriving on the surface
of the gas bubble decreases with decreasing R e • Of course the
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Fig. 12 Variation of the maximum impact wall pressure PG.max w i t h 

the position of a gas bubble S/L (Vc = 6.0 kV, L = 5.0 mm) o' Re =0.8 
mm, Af le =0.5 mm, ps =5.26MPa 

wall pressure. On the other hand, a sharp pressure pulse 
occurs in the region of w<ws. In this region we could 
frequently photograph a shock wave generated at the rebound 
of an attached gas bubble. An example of photographing a 
shock wave is shown in Fig. 10. However in the same region a 
counterjet is also observed during the rebound. The existence 
of this counterjet demonstrates the formation of a liquid jet. 
It is shown in references [31, 32] that a sharp pressure pulse 
with very short duration appeared on the solid wall by im
pinging a high speed liquid jet. In view of these facts in the 
region of w<ws, it is difficult to judge from only the pulse 
width which factors are the sources for the impact wall 
pressure generation. 

Figure 11 shows the variation of pG, max with the distance L 
for Re = 0.9 mm, in which a broken line represents a locus of 
the average values of ps for variable L. It is clearly seen that 
Pa, max ~L curve intersects withps — L curve at a certain point 
of L. When L is smaller than this point, a gas bubble acts as 
the source of more intensive impact pressure than the shock 
pressureps, while in the case of L apart from this point, it acts 
as the energy absorber from a shock wave. 

Next the case for S =5f 0 is discussed. In this case a gas bubble 
contracts with a part of its surface being flattened in the shock 
direction, i.e., 9 = tan~'(S/L). Therefore an oblique liquid 
jet may be formed at the final stage of the bubble collapse. In 
fact Singer and Harvey [33] performed an experiment on the 
cavitation damage of plasticine specimens by using an 
ultrasonic vibrator, and observed an interesting experimental 
evidence such that the axis of some of pits was as much as 35 
deg from the vertical. 

Figure 12 shows the variation ofpG, max w ' t r i S/L (or 9). As 
a gas bubble situates apart from the original point, pGy max 
decreases smaller than that in S—Q case due to the decrease of 
ps according as the increase of the propagating distance of 
shock wave to the surface of the gas bubble. Further, pG% max 
decreases as the angle 9 becomes larger, since an effective 
value to the solid wall is measured as the vertical component 
of it. It should be mentioned here that the pressure transducer 
used in the present experiment has a diameter of 5.55 mm 
which is fairly larger than the size of a minimum gas bubble. 
A real value of a maximum impact wall pressure released 
from the shock wave and/or the liquid jet during the bubble 

collapse should be larger than the one measured here. This is 
more so as the bubble becomes smaller, since the measured 
value is one averaged over the diameter of the pressure 
transducer. 

Conclusions 
In order to clarify the collapse process of a gas bubble 

attached to a solid wall by a shock wave and the mechanism of 
its induced impact wall pressure generation, a detailed ex
periment was performed by means of the photographing with 
a high speed camera and the pressure measurement. The 
results obtained here are summarized as follows: 

1. The impact wall pressure generated by a collapsing gas 
bubble attached to the solid wall is strongly dependent on the 
bubble size, the shock strength and the distance from the 
origin of shock wave to the gas bubble. A gas bubble acts as 
either the energy absorber from a shock wave or the source of 
more intensive impact wall pressure than one generated by a 
shock wave directly impinging on the solid wall without a gas 
bubble according to the factors mentioned above. 

2. The collapse process of a gas bubble by a shock wave is 
very intensive and the collapsing velocity at the top side of its 
bubble is extremely rapid with exceeding of 200 m/s. 

3. In the region where the significant interaction between a 
spark bubble and an attached gas bubble occurs, the source of 
the impact wall pressure is predominantly contributed from a 
liquid jet, whereas in the region where the interaction is 
weaker, both a shock wave and a counterjet are observed. 

4. The theoretical result with respect to the collapse time of 
a gas bubble attached to the solid wall by a shock wave 
coincides with the experimental result obtained here 
satisfactorily. 

5. When a shock wave impinges on the surface of a gas 
bubble from different direction with the axis of symmetry of 
the bubble, an oblique liquid jet developing in the direction of 
the impinging shock may be formed. 

Experimental Uncertainty 
Each open circle shown in Fig. 4 is averaged value with ten 

data. The length data shown in Fig. 6 are measured from the 
photographs which have an uncertainty of ± 2 percent except 
at the final stage of the bubble collapse with that of ±6 
percent. The experimental values comparing with the 
theoretical values in Fig. 7 have the uncertainty of ±2 per
cent. The uncertainty in the data presented in Figs. 8, 9, and 
11 are ±6 percent, whereas the data in Fig. 12 have the un
certainty of ± 10 percent. 
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D I S C U S S I O N 

A. Prosperetti1 

The authors are to be congratulated for reporting in this 
paper results of interest for their bearing on the mechanism of 
cavitation damage and bubble dynamics in general. 

The shock wave which in a real flow situation is irradiated 
by collapsing bubbles is obtained here by means of a spark 
discharge and subsequent growth of a vapor bubble. This 
results in a good simulation of the real process if the 
parameters of the shock wave (notably its width and strength) 
are comparable in the two cases. Maybe the authors can 
comment on this point referring to their collapse shock results 
shown e.g. in Fig. 10. 

I was also interested in the bubble-bubble interaction results 
shown in Fig. 5 in view of some numerical work based on 
potential flow which we did on the problem some time ago (L. 
Guerri, G. Lucca, and A. Prosperetti, "A Numerical Method 
for the Dynamics of Nonspherical Cavitation Bubbles," in 
Proceedings of the Second International Colloquium on 
Drops and Bubbles, Monterey, November 19-21, 1981, D. H. 
Le Croissette Ed., Jet Propulsion Laboratory Publication 82-
7, pp. 175-181). The figure reproduced here shows some 
results for the case of axisymmetric collapse of one spherical 
and one hemispherical bubble attached to a solid wall (or, by 
reflection in the horizontal plane, of three equally spaced 
bubbles). Successive shapes of the bubbles are shown by thick 
lines, while the thin lines indicate particle paths. The situation 
is different from that of the paper because the bubbles begin 
to collapse at the same time. However these results show that 
the hemispherical bubble is impeded in its collapse by the 
neighbouring one and takes on an elongated shape 
qualitatively similar to that of the vapor bubble in the ex
periments (Fig. 5(b), frames 4-6). The numerical results also 
show that the time to collapse is affected by the presence of 
other bubbles, a factor which is not taken into account in the 
calculations of the paper. I would suggest that the discrepancy 
between calculated and measured collapse times for large Re 
which can be seen in Fig. 7 is caused by the flow field of the 
spark-generated bubble. When the bubbles come close 
together (which, for the conditions of the experiment, implies 
large radii and greater collapse times) the interaction is not 
only due to the pressure wave but also to the actual flow field. 
Maybe some other effects depending on Re reported in the 
paper are due to this factor. 

Finally I would like to make a remark, and ask the authors' 
opinion, on the difficult question of shock waves versus 
microjets as agents of cavitation damage. The unambiguous 
identification of a shock wave irradiated by the bubble upon 
rebound and a failure to identify pressure pulses caused by the 
microjet does not necessarily demonstrate that cavitation 
damage is not to be imputed to the latter. If the action of the 
microjets is to cause very minute fractures of the surface of 
the solid, they could have such an effect without producing 
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D I S C U S S I O N 

A. Prosperetti1 

The authors are to be congratulated for reporting in this 
paper results of interest for their bearing on the mechanism of 
cavitation damage and bubble dynamics in general. 

The shock wave which in a real flow situation is irradiated 
by collapsing bubbles is obtained here by means of a spark 
discharge and subsequent growth of a vapor bubble. This 
results in a good simulation of the real process if the 
parameters of the shock wave (notably its width and strength) 
are comparable in the two cases. Maybe the authors can 
comment on this point referring to their collapse shock results 
shown e.g. in Fig. 10. 

I was also interested in the bubble-bubble interaction results 
shown in Fig. 5 in view of some numerical work based on 
potential flow which we did on the problem some time ago (L. 
Guerri, G. Lucca, and A. Prosperetti, "A Numerical Method 
for the Dynamics of Nonspherical Cavitation Bubbles," in 
Proceedings of the Second International Colloquium on 
Drops and Bubbles, Monterey, November 19-21, 1981, D. H. 
Le Croissette Ed., Jet Propulsion Laboratory Publication 82-
7, pp. 175-181). The figure reproduced here shows some 
results for the case of axisymmetric collapse of one spherical 
and one hemispherical bubble attached to a solid wall (or, by 
reflection in the horizontal plane, of three equally spaced 
bubbles). Successive shapes of the bubbles are shown by thick 
lines, while the thin lines indicate particle paths. The situation 
is different from that of the paper because the bubbles begin 
to collapse at the same time. However these results show that 
the hemispherical bubble is impeded in its collapse by the 
neighbouring one and takes on an elongated shape 
qualitatively similar to that of the vapor bubble in the ex
periments (Fig. 5(b), frames 4-6). The numerical results also 
show that the time to collapse is affected by the presence of 
other bubbles, a factor which is not taken into account in the 
calculations of the paper. I would suggest that the discrepancy 
between calculated and measured collapse times for large Re 
which can be seen in Fig. 7 is caused by the flow field of the 
spark-generated bubble. When the bubbles come close 
together (which, for the conditions of the experiment, implies 
large radii and greater collapse times) the interaction is not 
only due to the pressure wave but also to the actual flow field. 
Maybe some other effects depending on Re reported in the 
paper are due to this factor. 

Finally I would like to make a remark, and ask the authors' 
opinion, on the difficult question of shock waves versus 
microjets as agents of cavitation damage. The unambiguous 
identification of a shock wave irradiated by the bubble upon 
rebound and a failure to identify pressure pulses caused by the 
microjet does not necessarily demonstrate that cavitation 
damage is not to be imputed to the latter. If the action of the 
microjets is to cause very minute fractures of the surface of 
the solid, they could have such an effect without producing 
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Fig. 12 Simultaneous axisymmetric collapse of one hemispherical 
and one spherical bubble in an inviscid incompressible liquid. The 
figures show successive bubble shapes (thick lines) and particle paths 
(thin lines). The initial distance between the bubble centers is, from left 
to right, 2.5, 2.2, and 2.1 initial radii. The shapes shown are for: A,t = 0; 
b, ( = 0.950; C, ( = 1.063; D, ( = 1.105 (left and right), ( = 1.103 (center); E, 
( = 1.130; F, ( = 1.135. Distances are made dimensionless with respect 
to the initial radius R0 and times with respect to fl0{/>/(p„ - p ; ) ) 1 ' 2 , 
where p is the liquid density and p „ and p,- denote the ambient and 
internal pressure taken as constants. 

notable pressures. It is possible that shock waves become 
effective in causing weight loss only after the surface has been 
exposed to "working" by the microjets? In this case both 
mechanisms would be important and, once more, the truth 
would be in the middle. 

Authors' Closure 

The authors wish to thank Professor Prosperetti for his 
useful discussions. 

In the present experiment, shock waves with strengths < 
about 5 MPa and pulse width ws~5 fus are used in order to 
study the sock wave-bubble interaction. These values were 
determined by referring to the experimental study on the 
ultrasonic cavitation [34] in which the shock amplitudes of 
about 5 MPa were measured at the position of 1 mm apart 
from the center of collapse by means of optical methods. By 
the way, parameters of the shock wave produced in Fig. 10 are 
measured as jPo,max = 10.4 MPa and w = 2.6 fjs. The peak 
pressure/7gmax will reduce to the value of about 3 MPa at L = 
5 mm along a \/L decrease curve. 

The authors are also thankful to Professor Prosperetti for 
his suggestion concerning the bubble-bubble interaction, and 
believe that the numerical results obtained by him and co
worker provide valuable addition to this paper. As a gas 
bubble increases in size, the interaction of it with a spark 
bubble becomes remarkable. This relation is shown in Fig. 13, 
where i?„0 indicates an averaged curve of five trials. It is 
clearly seen that when Re increases, the discrepancy of Hv 
from Rvfi becomes larger. This means that a gas bubble will 
be affected by a spark bubble with increasing Re. In general, 
there exists Bjerknes force between pulsating bubbles at a 
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Fig. 13 Interaction between a gas bubble and a spark bubble 

distance 2d apart. Two bubbles pulsating in phase attract each 
other, and bubbles pulsating 180 deg out of phase repel each 
other. These are mathematically equivalent to the motion of a 
bubble at a distance d from a solid wall for the former and 
from a free surface for the latter, respectively. The periods of 
collapse will be lengthened near a solid wall and shortened 
near a free surface. In our experiment the motions of two 
bubbles are 180 deg out of phase in the initial stage of their 
motions. As a result, the calculated collapse times would be 
overestimated than measured collapse times because the 
interaction of a gas bubble with a spark bubble is not taken 
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into account in our calculations, and thus the discrepancy 
between them becomes larger with increasing Re. 

Now the authors would make a remark on the mechanism 
of impact pressure generation. We do believe that three types 
of damage forces are possible, and basically agree with the 
discussor's opinion. They are resulted from a shock wave, 
from a liquid jet and from both a shock wave and a liquid jet. 
The induced impact wall pressure modes are fairly 
corresponding to the bubble collapse modes depending on 
L/Rmax, where L is the distance between the electrodes and the 

solid wall and i?max a maximum bubble radius (see reference 
[35] for details). 
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The Flow States of Liquid Through 
Two Series-Connected Diffusers 
Subject to Cavitation 
A "diffuser" is a ventUri-like element with a well-formed contraction followed by a 
small-angle diffuser. When liquid flows through two diffusers connected in series 
various flow states are possible depending on whether or not cavitation occurs in the 
diffusers. It is shown that, in the absence of strong "Reynolds-number effects," 
one of just two possible sequences of flow states can occur for a particular pair of 
diffusers. Denoting the diffusers by "upstream" and "downstream," cavitation 
can occur as follows with increasing flow: 

1. Neither; upstream only; both. 
2. Neither; downstream only (and upstream never). 

Once this classification is known it is easy to predict the characteristics of the circuit 
which can then be used to define an "equivalent single diffuser" to represent the 
pair of diffusers. Experimental data verifying the theory are included. 

Introduction 

If liquid flows through a converging and then gradually 
diverging channel (as shown in Fig. 1), like a metering venturi, 
the onset of cavitation greatly alters its pressure-drop ~ flow 
characteristics. The effect is strongest when the diverging 
section is designed to provide good pressure recovery. 
Cavitation limits the degree of recovery and results in an 
abrupt demarcation between the cavitating and noncavitating 
characteristics. The significance of cavitation in metering 
Venturis is described in [1, 2, and 3]. Despite this complicating 
factor, it is not difficult to characterize flow through a single 
"diffuser" (as these elements will be called). Is it, however, 
more difficult to characterize the flow through two diffusers 
in series. Is it inevitable that both diffusers will cavitate when 
the flow is sufficiently large? If one diffuser cavitates, which 
is it, the upstream or the downstream diffuser? These are 
qualitative questions which are answered in this paper thereby 
facilitating the quantitative characterization of the two-
diffuser system. 

The results are of great practical importance in determining 
the operation of fluidic diodes (usually vortex diodes) because 
their forward (low resistance) state operation can be modelled 
as two series-connected diffusers. 

Characteristics of a Single Diffuser 

Under noncavitating conditions the pressure Pu upstream 
of a diffuser can be expressed in terms of the flow q and the 
downstream pressure Pd by 

Contributed by the Fluids Engineering Division and presented at the ASME 
Applied Mechanics, Bioengineering, and Fluids Engineering Conference, 
Houston, Texas, June 20-22, 1983. Manuscript received by the Fluids 
Engineering Division, May 10,1982. Paper No. 82-FE-4. 

Pu = kq2+Pd (1) 

where k is a coefficient incorporating fluid and geometrical 
variables, and an overall noncavitating discharge coefficient 
C„ as follows: 

k=8p/Tr2C2
nd

4 (2) 
where d is the throat diameter. For a diffuser with good 
pressure recovery C„ would be between 2.5 and 3. 

When cavitation occurs the pressure at the throat drops to 
the vapor pressure Pv and the flow becomes independent of 
the downstream pressure. The upstream pressure can be 
expressed by 

Pu=jq2+P„ 0) 
where j is given by 

j = 8p/-K2C2
cd

4 (4) 
In this case the discharge coefficient Cc refers to flow ac
celerating to the throat of the diffuser and is expected to have 
a value similar to that of a good nozzle, i.e., circa .97. 

The two characteristics are shown in Fig. 2. There is an 
abrupt change from one characteristic to the other at the onset 

Pv WHEN CAVITATING 

FLOWq AXIS 

CONICAL DIFFUSER TOTAL ANGLE & 

Fig. 1 Converging-diverging duct referred to as a "diffuser" 
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of cavitation. The sudden increase in resistance is because 
increasing the flow beyond the cavitation point ceases to be 
accompanied by increased pressure recovery. 

Explicit Characterization of a Single Diffuser. The 
operating state of a single diffuser can easily be found: 

1) Given the flow find the pressures: 
Use equations (1) and (2) and select the greater value of Pu. 

The cavitating state is determined, of course by which 
equation gives the higher yalue. 

2) Given the pressures find the flow. 
The pressures may be a pair selected from Pu, Pd or 

pressure drop. 

Equations (1) and (3) are simply inverted to give flow ex
plicitly, i.e.: noncavitating (from equation (1)) 

Q = 

cavitating (from equation (3)) 

Q--

PU-PH 

J 
In this case the lower value should be chosen. 

The intersection point of the two characteristics, i.e., 
onset point of cavitation is given by 

Qc = 
P«-P» 

(5) 

(6) 

the 

(7) 

(8) 

(by equating equations (1) and (3)) 

P =^Z^L+P 
l-k/j 

(by substituting in equation (3)) where qc and Puc are the 
coordinates of the intersection point. 

The Output Characteristics of a Diffuser Acting as a 
Source. The foregoing equations adequately describe the 
operation of a single diffuser but it is helpful for the two-
diffuser circuit to have another characterization. This is the 
pressure Pd downstream of a diffuser as a function of the 
flow when the upstream pressure is constant. This is, in effect, 
an "output characteristic" available from a constant pressure 
source via the diffuser. As shown in Fig. 3, the characteristic 
is a curve which drops away from the horizontal line 
representing the constant upstream pressure. At the onset of 
cavitation the flow reaches a maximum value and at this point 
the "output pressure" (i.e., Pd) drops abruptly. At different 
upstream pressures the characteristic would be similar but 
shifted vertically by the appropriate amount. The onset point 
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of cavitation however, would move along a parabolic locus 
"L" which is particularly important in the subsequent 
analysis. 

The equations defining the output characteristics and the 
cavitation-onset locus in Fig. 3 are simply a rearrangement 
and a combination of previous equations. Nevertheless it is 
useful to write them explicitly: 

gives the Noncavitating Output Characterise . This 
downstream pressure as a function of q and Pu 

Pd=Pu-kq1 (9) 

N o m e n c l a t u r e 

Cc = 

cn = 

d = 
E = 

J = 

discharge coefficient for 
cavitating flow 
values of Cc for upstream k = 
and downstream diffusers 
discharge coefficient for 
noncavitating flow k, = 
values of C„ for upstream 
and downstream diffusers 
diameter of diffuser throat 
ratio of k/j for upstream P = 
diffuser 
ratio of k/j for down- Pv = 
stream diffuser q = 
gradient of cavitating qm = 
characteristic: pressure Q -
drop/flow2 

gradient of noncavitating 
characteristic: pressure 
drop/flow2 

calculated loss coefficient 
for flow emerging from 
diffuser: dynamic pressure 

Q„, = cavitation-limited value of 

Q 
S = relative resistance ratio of 

diffusers, equal to jd/j„ 

Subscripts 
c - value for cavitating flow 

/flow2 

pressure, pressure in 
between the two diffusers 
vapor; ssure 
flow 
cavitaf, ,i-limited flow 
norma'i-td flow equal to 
Q^Tu 

d 

e 

u 

n 

= value for downstream 
diffuser 

= value for equivalent single 
diffuser 

= value for upstream dif
fuser 

= value for noncavitating 
flow 
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Locus of Cavitation-onset 

P=U-k)Q2+Pv (10) 

Cavitaiion-Limited Maximum Flow. The cavitation-limited 
maximum flow, q,„, at which the pressure falls abruptly in 
Fig. 3 is given by equation (6). 

Analysis of Two Series-Connected Diffusers 

The series-connection of two diffusers is shown in Fig. 4. 
They are referred to as "upstream" or "downstream." The 
circuit can be represented by superimposing the input 
characteristics of the downstream diffuser onto the output 
characteristics of the upstream diffuser. The pressure up
stream of the downstream diffuser is the output pressure 
downstream of the upstream diffuser so intersections of the 
two sets of characteristics represent operational states of the 
circuit. To simplify this process of superimposition and 
subsequent analysis it is helpful to define some simplifying 
variables. 

In the superimposition of the two sets of characteristics the 
downstream diffuser is characterized by equations (1) and (3) 
and the upstream diffuser by equations (3), (9) and (10). (The 
appropriate values of k and j distinguish between the two 
diffusers and between the two applications of equation (3).) 
These equations can be rewritten in terms of the following 
variables which are defined so as to give direct measures of the 
major quantities determining the results. Minor effects (such 
as variations of coefficients with Re) can be regarded as 
perturbations. 

Normalized Variables 

k / C \ 2 

E= ~- also equal to ( -~- ) for the upstream diffuser 
Ju ^nu ' 

s= 
Jd_ 

ju 

F= 

also equal to ( -~- ) ( -~- ) 
\ Ccd / \ ad / 

( C \ 2 

—^- ) for the downstream diffuser 
Jd 

Q2=JUQ2 

The variables E and F are nondimensional quantifiers of 
the performance of each individual diffuser. They are 
equivalent to a ratio of Euler numbers or pressure-drop 
coefficients. If the diffusers had the same geometric design 
and operated at similar Reynolds numbers, the two variables 
E and F would be equal. 

The variable S is primarily a measure of relative size. Here 
again if the diffusers have similar designs and operating Re, 
then the ratio of the discharge coefficients would be unity and 
size (i.e., d) would be the sole determining factor. 

The definition of Q is made to remove a multiplying factor 
(i.e.,y'„) throughout the analysis. 

Normalized Equations Representing the Two Diffusers 
Downstream Diffuser. Noncavitating Characteristic 

P=FSQ2+Pd (11) 

Cavitating Characteristic 

P=SQ2+PV (12) 

Upstream Diffuser. Noncavitating Output Characteristic 

P=PS-EQ2 (13) 

Cavitation Onset Locus 

P={\-E)Q2+PV (14) 

Cavitation-Limited Flow 

Ql=Ps-Pv (15) 
These relationships become straight lines when plotted on a 

P versus Q2 coordinate grid as shown in Figs. 5 and 6. The 

Pd 

UPSTREAM DIFFUSER 
THROAT DIA. du 

DOWNSTREAM DIFFUSER 
THROAT DIA. d d 

Fig. 4 Two series-connected diffusers 
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Fig. 5 Representation of type-1 circuits 
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Fig. 6 Representation of type-2 circuits 

characteristics of the upstream diffuser are represented by two. 
line segments. One segment UN slopes down from a value of 
Ps on the P axis to a point on the cavitation-onset locus L. 
From this point the other segment UC drops vertically to the 
P„ line. The downstream diffuser is characterized by another 
pair of line segments; one, DN, slopes up from a value of Pd 

on the P axis to a point on the cavitating characteristic; the 
other DC is the cavitating characteristic extending beyond this 
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point. The state of the circuit is represented by intersections of 
these two pairs of line segments. 

Consideration of the superimposed characteristics shows 
that there are two types of circuit: in type 1 represented by 
Fig. 5 the cavitation-onset locus L for the upstream diffuser is 
above the cavitating characteristic of the downstream diffuser 
DC. In type 2, represented by Fig. 6, L is below DC. Since 
intersection points of the two sets of characteristics must be 
on or above the DC line the fact that L is below it means that 
the upstream diffuser never cavitates in circuits of type 2. 
Because of the convexity of the configuration of line segments 
comprising the characteristics there is no other distinctive 
qualitative classification of circuit types. The characteristics 
of the two types of circuit are considered next. 

Characteristics of Type 1 Circuits (L above DC). Suppose 
the downstream pressure Pd is fixed and the flow is gradually 
increased. At first the supply pressure to the circuit Ps is small 
and the system is represented by intersection point /'i in Fig. 5 
where the two noncavitating characteristics cross. As the flow 
increases a point i2 is reached where the locus L intersects DN. 
The upstream diffuser starts to cavitate and at higher flows all 
intersection points must be on the vertical segment UC 
representing the cavitating state of the upstream diffuser. This 
means that for circuits of this type (type 1) the downstream 
diffuser cannot be the only one cavitating; the upstream 
diffuser must already be cavitating for this to happen. A 
typical state with cavitation in the upstream diffuser but not 
in the downstream one is indicated by intersection point ;3. 

As the flow is further increased point /4 is reached at which 
the downstream diffuser cavitates and for flows beyond this 
both diffusers cavitate. A typical point in this ultimate regime 
is /5. 

The sequence of cavitating states in the diffuser is 

Neither, Upstream only, Both. 

Quantitative Characteristics of Type 1 Circuits. The 
algebraic criterion for a type 1 circuit is that the gradient of L 
should be greater than the gradient of DC, i.e. 

t y p e l i f ( l - £ ) > S (16) 

In this circuit the supply pressure as a function of flow 
consists of two segments, a noncavitating segment up to 
intersection point i2 and another segment determined solely 
by the cavitating characteristics of the upstream diffuser. The 
transition to cavitation of the downstream diffuser does not 
affect the characteristics. The Ps ~ Q characteristics are given 
by these equations 

Noncavitating (from equations (11) and (13)) 

PS=(E+FS)Q2+Pd (17) 

Cavitating (from equations (13) and (14)) 

PS = Q2+Pv (18) 
Point of Cavitation Onset in Upstream Diffuser (from 
equations (11) and (14)) 

Table 1 Main dimensions of diffusers 

Q 4 Pd-Py 
l-E-FS 

(19) 

This is the transition point from the noncavitating to the 
effective cavitating characteristic for the circuit. 

Equivalent Single Diffuser. Since the characteristics of the 
two-dif fuser circuit of type 1 consist of two segments it can be 
regarded as a single diffuser with suitably defined "effective" 
characteristics. The "equivalent diffuser" can be defined as 
having the same size (i.e., d) as the upstream diffuser, and the 
same value of Cc but having a lesser value of C„. This ef
fective value of C„ is given by comparing the nortcavitating 

Diffuser 

1 
2 
3 

Uncertainty 
at 20 to 1 

Throat 
bore mm 

8.2 
9.77 
9.77 

± .02 

Exit 
dia mm 

29 
29 
29 

± .1 

Total 
angle" 

5.7 
5.9 
5.9 

± .1 

characteristics of a single diffuser and those of the circuit as 
given by equation (17). This yields 

ke=ku+ kd 

1 1 
C2 d" C2 dA + 

1 

(20) 

(21) 

Note that the diameter of the equivalent diffuser is made 
equal to du. 

Characteristics of Type 2 Circuits (L below DC). The 
operation of type 2 circuits can be seen by considering the 
effect of gradually increasing the flow while keeping the 
downstream pressure constant. The circuit is represented in 
Fig. 6. At low flows neither diffuser cavitates. As the flow is 
increased point /'6 is reached at which the downstream diffuser 
cavitates and at higher flows the operating point simply moves 
further up the cavitating characteristic of the downstream 
diffuser but always within the noncavitating regime of the 
upstream diffuser. The sequence of cavitating states for this 
type 2 circuit is therefore 

Neither, Downstream only (upstream never). 

Quantitative Characteristics of Type 2 Circuits. In this 
circuit, like the type 1 circuit, the Ps ~ Q characteristics have 
just two segments which can be referred to again as 
"cavitating" and "noncavitating." In this case it is the onset 
of cavitation in the downstream diffuser which determines the 
state. The noncavitating characteristic is given by the same 
equation as for the type 1 circuit, i.e., equation (17). 

The cavitating characteristic is the sum of the cavitating 
pressure drop in the downstream diffuser and the non
cavitating pressure drop through the upstream diffuser. Its 
equation is therefore 

P=(S+E)Q2+PV (22) 

The flow at which cavitation occurs is given by 

>=J S{l-F) 
(23) 

Equivalent Single Diffuser. Again, like the type 1 circuit, 
the type 2 circuit can also be regarded as a single diffuser. By 
comparing equations (17) and (22) defining the type 2 circuit, 
with equations (13) and (15) representing a single diffuser (or 
equations (1) and (3)) the effective coefficients ke and j e 

defining the hypothetical equivalent diffuser can be found, 
i.e.: 

ke=ku+kd (24) 

Je=Jd + ku (25) 

These can be put alternatively in terms of the equivalent 
diameter and discharge coefficient. 

1 1 1 
C2 rf4 C2 dA + C„ddd 

1 1 
+ 

ndud 

1 

(26) 

(27) 
/^2 .74 r>2 J4 ' f-Q. w4 
W e ° e *~-cdud *-'nuuu 

Since there are 3 effective variables, the two discharge 
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Fig. 7 Characteristics of three single diffusers. Uncertainty at 20:1 
odds, flow ± .0167 liter/s pressure ± 0.3 kPa 

coefficients and the diameter, and only two equations, it is 
arbitrary how the equivalent diffuser is defined. The main 
fact is that such a diffuser can be defined but its defining 
parameters are subject to a degree of choice. 

Experimental Verification 

Three diffusers, with dimensions shown in Table 1, were 
tested with water at 17°C to verify the predicted results. 
Measurements were made with a mercury-in water manometer 
with an uncertainty of ± .3 kPa and with a Rotameter-type 
flowmeter with an uncertainty of ± 1 liter/min at 20 to 1 
odds. 

Water Quality and Related Effects. The objective of our 
research is to develop liquid-handling systems for industrial 
applications so the gross changes in performance caused by 
cavitation are the main interest rather than cavitation per se. 
The water was not specially treated so that its air and nuclei 
content would be similar to that in the application. The 
"vapor pressure" is therefore less well-defined than for pure 
water since its effective value could be raised by the air 
content (a typical value might be circa 18 kPa). Despite this 
possibility, the theoretical pure-water-value for Pv is used in 
the ensuing analysis of the experimental results but, in fact, a 
degree of uncertainty in the value for P„ would not seriously 
affect the results. The angle of lines DC and L in Figs. 5 and 6 
would be changed and a slightly less convincing coincidence 
of data and theory would be expected. 

Another effect that might occur is some degree of in
teraction: i.e., if the upstream diffuser cavitates and thereby 
changes the nucleation properties of the flow entering the 
downstream diffuser. The results show that such interaction 
was absent or that it was insignificant. This is in agreement 
with the results got by Numachi et al. [4] who were worried 
about the same topic in tests on venturi meters. 

In a general sense, the relationship of the results to the 
properties of the water is similar to that in large tur-
bomachines for which useful cavitation data are obtained 
despite the need to use unrefined water. 

Results for Single Diffusers. First the diffusers were tested 
singly by measuring the pressure upstream as flow was in-

Table 2 Data for single diffusers 

Diffuser 
kPa/(liter)/s)2 

1 
2 
3 

Uncertainty 
at 20:1 odds 

23.5 
14.2 
12.9 

± 1.6 

Calculated exit loss 

206 
104 
104 

±2.1 

= 1.15 kP a/(l 

2.76 
2.51 
2.62 

± .02 

ter/s)2 . 

.933 

.924 

.924 

± .012 

creased covering both cavitating and noncavitating regimes. 
The outflow from the diffusers emerged into a large tank so 
the downstream pressure was constant and close to at
mospheric. Also, the relatively small dynamic head of the 
outflow contributes to the noncavitating measured pressure 
drop. The results are shown in Fig. 7 where the upstream 
pressure is plotted against the flow squared. The straight lines 
drawn in Fig. 7 correspond to equations (1) and (3). The 
constants Pv and Pd are the same for all cases and had values 
ofP„ = 1.93 kPa and Ptl - 101.4 kPa. The values of k, j and 
the consequent values of C„ and Cc for these lines charac
terizing the diffusers are given in Table 2. Also included is the 
loss factor k/ calculated for the component of dynamic head 
emerging from the 29 mm diameter exit of each diffuser. It is 
small but not negligible. 

Evidently, equations (1) and (3) are good representations of 
the performance. The sharp transition to cavitating flow 
implied by the intersection of the lines is reflected in the 
measurements near that point and by the appearance of 
cavities in the flow (which could be seen through the trans
parent diffusers). The cavitation appeared first around the 
periphery of the throat. With increasing flow, the zone of 
cavitation progressively extended downstream from the throat 
in the same way as reported by other researchers (e.g., [3]). 
These results were not new but they show that the diffusers 
were not abnormal in any way. The difference between the 
noncavitating characteristics of diffusers 2 and 3 appeared to 
be caused by a slight difference in throat length (although they 
were nominally the same). 

Experiments on Series-Connected Diffusers. The results 
from tests on three circuits will be considered. The circuits 
were formed by connecting the diffusers by a 38 mm bore pipe 
with a separation of 0.25 m. In the numerical calculations it 
has been assumed that half of the dynamic head leaving the 29 
mm bore exit of the upstream diffuser is recovered by the 
interconnecting pipe. Hence the k and j coefficients for the 
downstream diffuser have been reduced by subtracting Vi kh 

The pressure upstream of the series-connected diffusers was 
measured as the flow was increased. The flow discharged into 
a large tank at near-atmospheric pressure in the same way as 
for the tests on the diffusers singly. The objective was to show 
that the characteristics of both types of two-diffuser circuit 
could be calculated from those of the single diffusers, and 
that an "equivalent diffuser" could be defined. 

Results of Tests on Series Connected Diffusers. The results 
are shown in Fig. 8 where the upstream pressure is plotted 
against the flow squared. The straight lines drawn in Fig. 8 
correspond to equations (1) and (3) with equivalent values of 
k andy derived in accordance with equations (17), (18), and 
(22) (but with the small dynamic head correction as 
described). The values of these coefficients and the 
parameters E, S, F, circuit type and the discharge coefficients 
of the effective diffusers are shown in Table 3. 

The equivalent diffusers were defined as having a throat 
bore equal to that of the smallest diffuser in the pair. This 
imposed constraint enables the coefficients to be unam
biguously defined for the type-2 circuits. 

The results for the series-connected diffusers show the 
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Table 3 Characteristics of series-connected diffuser circuits 

Circuit 

1 
2 
3 

Upstream 
diff. 

1 
2 
2 

Downstream 
diff. 

2 
1 
3 

Uncertainty at 20:1 odds 

S 

.114 

.136 

.136 

±.036 

E 

.502 
1.97 
.994 

± 006 

F 

132 
111 
119 

Circuit 
type 

1 
2 
2 

Data for 

k J 
kPa/(liter/s)2 

37.13 
37.13 
26.5 

± 2 

206 
219 
117 

±3 

equivalent sin 

c 

2.2 
2.2 
1.83 

± .03 

gle diffuser 

C„ 

.933 

.903 

.868 

±.02 

Bore 
mm 

8.2 
8.2 
9.77 

± .02 

DOWNSTREAM PRESSURE 

PREDICTED FROM SINGLE 
DIFFUSER DATA 

CIRCUIT 
O 1 — - 2 
O 2 — 1 
A 2 — 3 

_VAPOUR PRESSURE 

I 
1 0 1 5 

FLOW SQUARED ( I / s f 

Fig. 8 Characteristics of three 2-diffuser circuits. Uncertainty at 20:1 
odds, flow ± 0.167 liter/s pressure =t 0.3 kPa 

predicted two-segment type of characteristics. The transition 
point is where the upstream diffuser cavitates in circuit 1 and 
where the downstream diffuser cavitates in circuits 2 and 3. In 
circuit 1 the upstream pressure is unaffected by the onset of 
cavitation in the downstream diffuser (as expected); in fact 
the cavitating characteristic is identical to that of the upstream 
diffuser alone. In circuits 2 and 3, cavitation was suppressed 
in the upstream diffuser because of the back pressure caused 
by the downstream diffuser. In this case the cavitating 
characteristic is the sum of the appropriate single diffuser 
characteristics as predicted. 

It is interesting to note that circuit 3 using two nearly 
identical diffusers is definitely a type 2 circuit, it is not a 
borderline case. 

Consideration of the Reynolds Number and Related Ef
fects. The clear-cut results demonstrated so far are a result of 
the distinct two-segment geometry of the characteristics of the 
single diffusers. Some well-documented influences might 
complicate this situation, however. One such influence is the 
variation in the discharge coefficient as a function of 
Reynolds number as described by Hall [5]. The discharge 
coefficient increased from .95 to .99 as Re increased from 
20000 to 200000 in a typical well-formed nozzle for example. 

Consideration of this however shows that although it is 
significant in regard to flowmetering applications, its effect 
on the results derived here is rather small because of the large 
difference in the gradients of the cavitating and non-
cavitating characteristics. The effect would in fact be more 
noticeable in devices with a poor pressure recovery which 
would imply a lesser distinction between the two charac
teristics and therefore more chance of an ill-defined transition 
point. A design feature likely to promote this complicating 
influence is a long parallel section at the throat of the diffuser. 
The diffusers tested however all had virtually no parallel 
section at the throat so no specific tests have been done to 
investigate such details. 

Analogous Treatment for Orifices 

Usually when flow passes through an orifice plate in a pipe 
there is some degree of pressure recovery downstream. The 
orifice can therefore be regarded as a degenerate diffuser 
characterized by two equations like equations (1) and (3). The 
values of k and j would be closer than for the diffuser and 
would be equal in the extreme case of an orifice with no 
downstream pressure recovery. The theory developed for 
diffusers therefore encompasses numerous other systems. 

Conclusion 

Two series-connected diffusers can be characterized by 
equations analogous to those for a single diffuser. These are 
simple because they are represented by two distinct segments: 
cavitating and noncavitating. The quantitative details of this 
analogy depend on whether the upstream or the downstream 
diffuser cavitates first. This fact can be prediced fairly easily, 
however, so the analysis is straightforward. The experimental 
results corresponded well with the theory. 
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Pressure Field Generated by 
Nonspherical Bubble Collapse 
The method of matched asymptotic expansions is used to investigate the behavior of 
a collapsing bubble near a solid wall. Cases are studied in which the ratio e between 
the initial spherical bubble radius and its distance from the wall is small. Ex
pansions in powers of e lead to a simple system of differential equations which is 
solved numerically. The bubble shape, the velocity potential and the pressure field 
are determined as functions of time. The deformation of the bubble is a singular 
perturbation of the pressure field around it. An increase in the value of e augments 
the pressure on the solid wall by orders of magnitude. The influence of surface 
tension and the proximity of the wall, gas content and its law of compression, are 
investigated. The results are compared to previous investigations. One advantage of 
the method employed is the fact that it leads to a numerical solution which costs 
very little computer time. In addition, it can be extended very easily to more 
complex cases such as multibubble configurations or to walls coated with 
elastomeric coatings. 

Introduction 

The modeling of cavitation erosion and noise, as well as the 
related scaling effects, requires the knowledge of individual 
and collective bubble behavior. Most of the presently used 
modeling approaches are of a statistical nature and are based 
on a spherical bubble collapse theory developed by Rayleigh. 
This spherical model was extended by Plesset [1] to the case of 
a gas and vapor filled spherical bubble moving with the 
surrounding fluid. However, in practical situations where 
cavitation is harmful, collective bubble collapse and the 
presence of nearby solid boundaries are fundamental. Ob
servations of nonspherical bubble collapse have been made 
experimentally using high-speed photography [2-4]. A high
speed re-entering jet is seen to be formed at the final stage of 
collapse. Pressure waves of higher maximum amplitude than 
those obtained in the spherical case are expected to be 
generated and to contribute to the jet's damaging effect. 

Despite its great practical importance, nonspherical bubble 
dynamics studies are not very advanced due to the complexity 
of the free boundary problem involved. Analytical solutions 
are unlikely at present. However, several important con
tributions do exist [5-8] which are either purely numerical or 
numerical with some analytical simplifications. These in
vestigations succeeded in describing the re-entering jet for
mation, as well as its early evolution. The final stage of 
collapse could not be obtained, due either to numerical in
stabilities or to failure of the analytical model. These 
calculations are very time consuming; thus they have not been 
extended to investigate the influence of different parameters, 
or to study complex configurations. In previous publications 
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[4, 9], we proposed and used matched asymptotic expansions 
to study the problem when the bubble radius is small com
pared to its distance from nearby boundaries. The behavior in 
the more complicated case where the two lengths are of the 
same order of magnitude, can be at least qualitatively deduced 
from the behavior of the solution when the small parameter 
approaches unity. This method is used here for the analysis of 
the collapse of an isolated bubble near a solid wall. A moving 
coordinate system attached to the bubble allows to follow the 
bubble deformation during the collapse for a long period of 
time. The potential flow is determined and then used to 
describe the pressure field evolution around the collapsing 
bubble. One attractive advantage of this method is its small 
computer run time. Less than forty seconds of a Univac 1110 
are needed to describe the whole bubble collapse as well as the 
pressure field. 

Formulation of the Problem 

Let us consider the classical problem of the collapse of an 
initially spherical bubble near a solid wall. R0 is the initial 
radius of the sphere and I0 is the initial distance from its 
center to the solid wall. Due to a change in the ambient 
pressure P„(t), the bubble shape changes. Our aim is to 
determine, at a subsequent time t, the equation of the bubble 
wall, R(d, t), as well as, the pressure field around it, p(r, 8, 
t). To do so, let OQ-XQ Y0Z be the initial coordinate system and 
QXYZ a coordinate system moving in the z direction. If 6(0 
is the distance 000, the distance from the origin to the wall at 
the time t is given by /(/) = /0 - b(t). A point M on the 
bubble surface is defined by the angle d (Fig. 1) and the 
distanceR(8, t) fromO. 

If the fluid is assumed to be inviscid and the flow 
irrotational there exists a velocity potential <f> such that the 
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Fig. 1 Definition of different characteristic lengths 

velocity field is given by V = V<t>. If the fluid is also in
compressible, it satisfies the Laplace equation, 

A<t> = 0. (1) 

To determine the bubble wall motion one has to solve 
equation (1) subjected to the following kinematic and 
dynamical conditions on the bubble surface and on the solid 
wall: 

V<j}'n\r=mt) = [Rer + bez]-n, 

p[4>-b ez'V <t>+Vi\v 4>\2}r=R(B,t) 

= P„(t)-Pg(t)-P0+2yC(6,t), (3) 

V<Ml , = / ( / ) / c o s 9 =0, (4) 
where C and n are, respectively, the curvature of the bubble 
surface and its unit normal vector at the point M(0, t). 7 is 
the surface tension and dots denote time differentiation. <t> 
and the operator V are expressed in the moving system 
OXYZ. P„, Pv, and Pg are the imposed ambient pressure, the 
vapor pressure and the pressure of the gas inside the bubble. 
If we assume a polytropic behavior, Pg is related to its initial 
value by the equation 

Ps«)=P* 
R0

3k 4 
• fl", (5) so Vk{t) 3 

where V(t) is the volume of the bubble at the time t, and k is 
the polytropic coefficient (1 < k < cp/c„). 

To these conditions, we have to' add the initial condition 
and the boundary condition at infinity: 

*(r,0,O) = O, 

P»(0) = P0=PSo+Pv-

lim 4>(r,6,t) = Q. 

ZL (6) 

The pressure field is then determined by the Bernoulli 
equation which can be written in the moving system as 
follows: 

p( r , / ) = -<£ + i e2« V</>-'/21 V<£l2+/>„(/) . (7) 
With no further simplifications or assumptions, this 

general problem is not easily solved analytically. As men
tioned above, numerical computations, can be used, the most 
attractive ones being based on a variational formulation. 
However, when the ratio R0/lo is small, analytical 
calculations using matched asymptotic expansions 
dramatically simplify the problem leading to a low time-
consuming numerical resolution. 

(2) Matched Asymptotic Problem 

When the orders of magnitude of R0 and l0 are different 
(i.e., R0/l0 = e < < l ) , the problem has two different 
characteristic lengths, and depending on whether one is in
terested in the vicinity of the bubble " inner reg ion ," or in the 
vicinity of the solid wall "ou te r reg ion ," R0 or /0 should be, 
respectively, choosen as the length scale, L. By doing so, the 
problem (1) to (6) is divided into two easier subproblems, the 
" i n n e r " (L = R0) and the " o u t e r " (L = / 0 ) , with matching 
conditions in between. Before giving the details let us notice 
that , to the first order of approximation (e = 0) in the inner 
problem the solid wall is effectively at infinity. The bubble 
reacts to a change P„ (t) in the ambient pressure as if it were 
in an infinite medium. It therefore behaves spherically, its 
wall mot ion a0(t) being given by the Rayleigh-Plesset [1] 
equation. To the same order of approximation the bubble 
appears as a spherical singularity of strength q0 (t) = a0

2 d0 

in the presence of a solid wall. The solution is easily obtained 
by the use of the method if images. The resultant flow is that 
due to the superposition of two sources—one the actual 

N o m e n c l a t u r e 

«o.ffi. a„ = 
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source at 0 and the other ah identical one symmetrical to 0 
with respect to the wall. To the following orders one has to 
solve in the "inner problem" the Laplace equation and satisfy 
the boundary conditions on the bubble surface. The con
ditions at infinity are to be replaced by a matching condition 
with the "outer solution." This is obtained by applying the 
"Asymptotic Matching Principle" [14] which, in the case of a 
series expansion as here, stipulates: "the «-term inner ex
pansion of (the w-term outer expansion) = the /w-term outer 
expansion of (the n-term inner expansion)." This can be 
written in an intuitive physical way as follows: 

Expansion 0out = Expansion </>in (8) 
/• = r//0—0 r = r/i?0 —oo 

Nondimensionalizations 

In order to make asymptotic expansions (and thus to 
compare orders of magnitudes) an accurate choice of 
characteristic scale variables is fundamental. For the length 
scales the choice is obvious: R0 in the inner problem, l0 in the 
outer. The time scale has to be the same for the two problems 
and, since we are interested in the collapse history, the 
Rayleigh time based on R0 and the characteristic value of the 
imposed pressure perturbation, Ap, is taken as this time scale: 

T=R0^p/AP. (9) 

AP, which is also taken as the characteristic scale for the 
pressures, can be defined as the difference between the , 
maximum value of P& (t) and the initial value Poo(O) = P0. 

AP=Pm (10) 

If surface tension is neglected and if the cavity contains only 
liquid vapor, then P0 = Pv and T is the classical Rayleigh 
time. In the more general case considered here P0 is given by 
(6). 

The only variable left is the characteristic velocity potential 
3>o- As we have mentioned before, in both regions the flow in 
the first approximation is due to the presence of a source (and 
its image for the outer problem) of strength q0(t) (charac
teristic scale R0

3/T). Then, the velocity potential has the scale 
q0(t)/r. That is to say, * 0 = R0

2/T for the inner problem 
and $ 0 = i?0V/0 Tfor the outer problem. 

With these characteristic scales, non-dimensional variables 
all of order unity are introduced through the following 
definitions, where bars denote outer non-dimensional 
variables and tildes inner ones. 

r = r/R0 ; r = r/l0, 

4> = <I>T/R0
2 ; j> = e<t>T/R0

2, 

p(t)=p(t)=p(t)/AP, (11) 

t = i=t/R04p/~AP, 

1=1/lo, 

b = b/R0 ; b = b/l0. 

Each of the unknowns is then expanded in power series of e as 
follows: 

4> = <i>0 + e(j>l+e2<i)2 + e3<i>i+ • • • . 

4> = 4>0 + e4>1+e24>2 + e3^3+ . . . , 

b = B0 + ebi+e2b~2 + e3B3+ . . . , 

R = a0 + eRl + e2R2 + e3R3 + . . . . 

Analytical Solution 

First Order of Approximation (t°). As stated before, the 
bubble behaves spherically to the first order of ap

proximation, and its radius is given by the following non-
dimensional Rayleigh-Plesset equation: 

3 . 
«o«o + T « V = -PV) +P(a0"

M - 1) 

where 

+ We-
i(a0-

ik-

We=RQ-AP/2y 

_ Pn-P„ Pso 

•do'1) 

•W. 

(12) 

(13) 
-•P^-W, 

AP AP "" ' g° 
The parameter P is a measure of the initial nondimensional 
gas pressure inside the bubble. The potential flow in the inner 
problem can then be written: 

0o = 
- f f o «o -«fo(0 (14) 

In the outer problem, the potential flow is that due to the 
superposition of two symmetrical sources relative to the wall 
(Fig. 1) and can be written: 

4 = -<7o(0 [T4]- (15) 

To this order, due to the spherical symmetry of the problem, 
no bubble motion occurs and if we fix the origin of coor
dinates to the bubble we can write: 

7o = l . £o=0 (16) 

Second Order of Approximation (e1): Lengthening Effect. 
The matching condition (8) shows that the first correction to 
the order-zero inner solution (14) is of order e. By taking 
Definitions (11) into account, equation (8) can be written: 

Expansion ($o + e0i + • • • .) = eExpansion(0o + e0i + . . . . ) 
r—oa r— oo 

which with (15) implies the already-known condition, 

lim 4>Q = 0, 
r— oo 

as well as 

QoU) 
lim 4>i — (17) 

4>i has to satisfy the Laplace equation, as well as the boundary 
conditions on the bubble wall (the contribution to order e of 
the expansion of (2) and (3) nondimensionalized). 

To this order all boundary conditions are spherical so that 
the solution 4>x can be written as: 

(18) 7 Q\ <7o 

*. = - y - y . 
where q0 and qx are functions of time, ^o n a s b e e n defined 
earlier, (14), and 

ql=d0
2dl+2d0a0di. (19) 

The first spherical correction, du of the bubble radius is 
obtained by solving the following differential equation. 

- - , i z . / S We~> „, ^ 0 \ 
a0ai+3a0«i +«i(«o r i - + 3 A : . , , , _ , ) 

Qo (20) 
a 0 3 ^ + l ^ 2 ' 

R1(0,t)=3l(f) 

If the surface tension and the pressure of noncondensable gas 
are neglected, equations (20) and (12) can be integrated to give 
the corrected period of oscillation of the bubble, which can be 
written: 

?=?o + «?i =0 .915 ( l+ - I j o B 0 « / f ) , (21) 

where f0 is the nondimensional time needed for a spherical 
void to collapse. A solid wall is therefore seen to have a 
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lengthening effect on the bubble collapse time (a free surface 
gives a shortening effect). This result has been predicted by 
energy considerations by Herring [10] as early as 1941. 

The outer solution of the problem is obtained by the use of 
the method of images, which consists of adding a symmetrical 
image to the correction-source, to give, 

* i -•ti+tt (22) 

As the problem is still spherical to this order, no motion is 
involved, and 

/ > £ ! = ( ) . (23) 

Third Order of Approximation (e2): Motion and First 
Nonspherical Deformation. The first nonspherical term in the 
equations appears to the order e2, in the expansion of the 
matching condition (8). This term varies as cos0. Since the 
nonspherical terms involving the motion of the origin of 
coordinates in the boundary conditions on the bubble ((2) and 
(3)) are also of the form cos0, the principle of less degeneracy 
leads to the choice, 

b = e2B2 + 

The equations to this order then take the form: 

A02=O, 

d</>2 

dr 
= 2Rn 

=«o 

d<t>2 d<t>2 

dr at 

+ R2 + b2cos8+F1(dl,d0), 

(24) 

(25) 

= R2d0 

«oz 
(lR 

dR2 d2R2 

dd2 a,2' 

-d0b2cos6+F2(dud0,Pga,k), 

02 = lim — r costH 
4 2 

(26) 

(27) 

where F, and F2 are known functions of dltd0, k, and Pg. 
This problem is more complex than those already solved in 

the two preceding orders. A solution can be obtained by 
means of an infinite spherical harmonic series expansion of 
4>2- Fortunately, due to the condition (27) and to the initial 
condition 02 (r, 6, 0) = 0, all the terms of the expansion are 
shown to be identically zero except the following ones: 

1 q2 4. 

02 = - y + (£•$')< B + ^ ) o o » » - | . (28) 

This leads to, 

R2(6,t)=a2U)+f2(t)cose. (29) 

d2 and/ 2 are given by the following differential equations: 

d0a2 + 'ia0a2 + d2'[a0 ^-+P. 
Ik \ 

d03k+l) 

Q\ = -^-+F3(d0,duWe-
l,Pg0,k), (30) 

dj2+3aj2 = -d0b2-3d0b2- — (d0q0 + d0q0). (31) 

Once d2 and/ 2 are known, q2 and h2 are given by the 
following relations, 

q2=2-^-ql + (2-^ ' 3 ~ ) q 0 + a2d0
2, (32) 

a0 \ a0 a0
2 J 

* 2 = - < 7 o ( ^ + / 2 ) - ™ ( / 2 + 62). • (33) 

The only remaining unknown, needed to solve equations 
(30) and (31) is the imposed motion of the origin of coor
dinates b2(t). The aim of this arbitrary motion, as stated 
before, is to provide at each time t a system of coordinates 
which can describe the bubble wall equation correctly. With 
no motion of 0, the part of the bubble surface farthest from 
the wall can reach 0 early in the collapse history. For sub
sequent times, 0 is outside the domain bounded by the bubble 
surface and the spherical coordinate system used (r, 6, </>) is no 
longer adequate to describe this surface. Therefore, the 
coordinate motion should be chosen in order to delay this 
limit, if not to avoid it. The first idea which comes to mind is 
to attach 0 to the center of gravity G of the bubble by writing 
its equation of motion. This motion is such that the net 
pressure thrust on the massless moving bubble is zero. The 
equation obtained is not an additional one and gives again (3) 
(or to this order (30) and (31)). Thus, the position of G is 
known once the whole problem is solved. An iterative 
procedure can be used by taking the position of the center of 
gravity of the bubble, at a given time step, as the new origin 
for the following step. Another approach has been used here 
because it appeared more practical. If a cavity is assumed to 
remain spherical while oscillating near a solid wall as a source 
of strength <|0 ( / ) , its center moves toward the wall with the 
velocity bs(t) given by: 

2dQ bs + 6a0 bs=-d0q0- d0 q0. (34) 

To obtain (34), only the source-image relative to the wall is 
taken into account. The images relative to the bubble wall are 
neglected and hence the conditions (2, 3) on the bubble 
surface are not satisfied. A motion of the origin of coor
dinates proportional to b~s, such that b~2 = Dep • bs, is ap
plied and gives good results for 1 < Dep < 1.5. 

Order e3 and Following. As we have seen above, the choice 
of b is somewhat arbitrary. We will then restrict the motion 
of the origin to 5(1) and treat the following orders of ap
proximation with no correction of this motion. One can show 
that to each order, as for the preceding orders, the radius R„ 
(6,t) is of the form: 

Rn(0J)=d„( i) +/„ (t) cosS+§„ (t)P2(cosfl) 

+ ynii)Pn-dcosff), 

where P„ (cos0) is the Legendre polynomial of order n. For n 
- 3, we have: 

R3(6,t) =d3(i) +Mt)cos6 

+ g 3 ( / ) . (3cos 2 0- l ) /2 . (35) 

«3 (J) >fi it) and g3 (1) are obtained by solving the following 
differential equations: 

d0a\ +3a0a}d3(d0 - We~
ld0~

2 + 3K Pg 'do-™-1) 
(36) 

= F4(,d0,aud2,We-
l,Pg0)-q2, 

dji +3a0f3 =F5(d0,dl J2), (37) 

d0§3 +3a0§3 -#3(«o - 6 W V a 0 ~ 2 ) 

= -5(<V<?0+4fl0
3<J0

2)/8, (38) 

where FA and F 5 are known functions of variables determined 
in the preceding orders of approximation. For the sake of 
conciseness the complete expressions are not given here but 
can be found along with more details of the calculations in 
[Hi-

Pressure Field. To sum up, the velocity potential in the 
outer problem can be written as follows: 

j>(f,6,t) = -{q0 + tqi+e2q2 + eiq1+e4q4){r-l+r'-1) 

+ (e3h2 + e4hi)(f-
2cos6-r'-2cose') (39) 
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+ e4Ki(r'3P2(cosd) +r' ~3P2(cosd') + 0(e4). 

The pressure field is obtained by replacing </> by its value in the 
Bernoulli equation to give: 

P=P« -^[e^'2 ;^-3 ;^-4 ; 

(40) 

Ae=r-2 + (r-2cos6)r'~3 

AF-2 sin0«r'-3 

[e<70+^<7i + eig2+e4q3j 

+ £ 2 ( C O S 0 T - 2 - . B ) + qj2cosdAe 

-q072sindAF + q0
2Ap] +0(e4) 

where 
As=r~l+r'-1 

E=2(2-r) cosd'f'-3 

B = (2-fcos6)r'-3 ; Ap = (A2 +A/)/2 

Once the evolution of the surface of the bubble and the 
velocity potential are determined, (41) allows a complete 
description of the pressure field and of its evolution with time. 

Numerical Results 

The equations (12), (20), (30), (36) to (38) constitute a 
system of seven equations with seven unknowns. Each of 
these equations is a differential equation of the second order 
which can be solved numerically by a Runge-Kutta procedure. 
Particularly the Rayleigh Plesset equation (12), and the origin 
of coordinates motion equation (34) are independent and can 
be solved easily to give a0 and b2. Equations (20) and (38) 
which depend on a0 and equation (31) which depend on d0 
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 1 De p = 1.15, c = 0.66, PgQ =0 .1 

and b2 can then be solved by the same procedure. The results 
are used to solve the remaining equations. This "multi-Runge 
Kutta" procedure is convergent and gives in few seconds of 
run on a Univac 1110 computer the collapse history of the 
bubble in some two thousands steps of time. 

The results are illustrated in Figs. 2 and 3. In both figures 
the initial bubble-center to wall distance is 1.5 R0. This is a 
classical case which was investigated in previous publications 
[5, 6, 7J. The numerical results of [5] were checked ex
perimentally in [3]. This is an extreme case for the ap
plication of the method, considering the higher value of e. 
However a qualitative agreement with the previous results and 
experiments is observed. Quantitatively, the time needed by 
the bubble wall to attain the initial position of the sphere's 
center is only five percent smaller than the results of reference 
[5]. As can be seen from the comparison between the two 
figures the influence of P^ is very important. Pg0 = 0.2 gives 
a cushioned collapse followed by a rebound without the 
formation of a re-entering jet. On the other hand when Pg0 = 
0.1, a re-entering jet is clearly formed. At the time-step 
following t = 0.977 (p/P0-Pv)

2, the motion of the jet 
overtakes that of the origin of coordinates, and the method no 
longer describes the bubble equation correctly. In order to 
investigate the influence of different parameters on the bubble 
wall motion, Figs. 4 and 5 compare the motion of the re
entering point on the bubble surface (point J in Fig. 1) in 
different cases. Figures 6 and 7 compare the motion of the 
origin of coordinates 0. We can see from Fig. 4, that 
decreasing the initial pressure of noncondensable gases inside 
the bubble PgQ is as effective in increasing the violence of the 
bubble collapse as decreasing the bubble wall distance. This 
result also applies to the pressure field generated around the 
bubble, and thus to the erosive effect of collapse. Such 
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behavior is expected since the gas acts as a spring cushioning 
the bubble implosion. The importance of the law of behavior 
of this gas, shown analytically in [4], is remarkably illustrated 
in Fig. 5 where the re-entering jet behavior is completely 
different between K = h and K = 1.4. However, the in
terpretation of the result is complicated: One would expect a 
faster collapse for the isothermal law. This is the case for the 
first order of approximation a0. However, the corrections ax, 
a2, a}, which are inversely dependent on a0, are greater than 
in the more realistic adiabatic case. The isothermal collapse 
remains more energetic since the attraction of the bubble 
toward the wall is much higher (Fig. 7). This is reflected in the 
results obtained for the pressure field. Let us note, however, 
that the solution in the isothermal case loses its validity earlier 
in the collapse history since the ratio of the bubble radius to 
its distance from the wall increases faster than for the 
adiabatic case. 

The influence of the surface tension can be reduced from 
Figs. 5 and 7. For high Weber numbers (We > 100) the 
motion of the re-entering point and of the center of the bubble 
are not very sensitive to a change of We. These motions 
become highly dependent on We for smaller values of this 
parameter. Surface tension effects are thus expected to 
become important with typical fluids for very small values of 
(R0 • AP). A similar effect is known for spherical bubbles. 
The most interesting result concerning nonspherical bubble 
dynamics is the influence of e (proximity of the wall) on the 
behavior of the re-entering jet and on the duration of collapse. 
As shown above, from considerations on the spherical 
corrections of the Rayleigh Plesset solution, a lengthening 
effect on the bubble collapse time is obtained with presence of 
a solid wall: The increase in the bubble life is directly 
proportional to e. However, one would expect intuitively that 
the jet velocity would increase with e and that the time needed 
for this jet to reach the opposite bubble wall can be smaller 
than the time needed for a spherical bubble to attain its 
maximum radius. This reasoning has been confirmed ex-
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Fig. 9 Pressure versus time at different locations 

perimentally [4, 12]. Figure 4 (and in more detail, Fig. 8) 
shows this effect: Unitl the latest stage of collapse, increasing 
e increases, at a given time, the distance OJ (Fig. 1). This 
shows the tendency towards lengthening the bubble life. 
However, this tendency is reversed later. The speed of the jet 
increases with e and the overall effect is to shorten the time 
needed for the re-entering jet to pierce the bubble. At the same 
time the attraction of the bubble towards the wall increases 
(Fig. 6). The effect of e on O0 J is greater than on OJ since the 
effects on OJ and the wall distance are then added. A similar 
shortening effect has been reported in the case of a moving 
spherical bubble [13]. In Fig. 8, the evolution with time of the 
distances OJ, OL, OS (Fig. 1) as well as the spherical solution, 
a are plotted simultaneously. These lengths are, respectively, 
noted in the figure as RJ, RL, RS, and AO. The lengthening 
effect is clearly seen on RL and would be greater if the curve 
represented O0L. On the contrary the collapse is faster for OS 
and especially of OJ, even without taking into account the 
motion of the origin. Let us note, however, that this is an 
extreme case, correspoding to Fig. 2. For nonviolent collapses 
(low values of e or high values of PgQ) a lengthening effect 
exists. 

In the last four figures we consider the pressure field 
around the collapsing bubble. This subject is a matter of 
concern, since earlier results seem to be contradictory. 
Mitchell and Hammitt [6] found that there was little pressure 
increase above ambient between the bubble and the wall. 
However 'Korovkin and Levkovskii [13] found, without 
taking into account the bubble deformation that the 
maximum value of the pressure on the nearby wall can be 
much higher than in the infinite medium case, if Pg is small. 
Here, we confirm this result without contradicting that of [6]. 
Figure 9 shows the evolution with time of the pressure on the 
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wall (point W, Fig. 1) and at two other points at a distance l0 
from 0—one on the axis of symmetry (noted VERT) and one 
in the plane parallel to the wall and passing through 0 (noted 
HORZ). These pressures are compared to that in an infinite 
medium (noted INFI). The presence of the wall greatly 
modifies the pressure field especially at W where the 
maximum pressure is two orders of magnitude higher than in 
the infinite medium. This maximum value drops significantly 
for a less violent collapse: Figure 10 shows that for Pg = 0.2, 
it is only three times that in an infinite medium. For t < 1, 
the pressure is reduced in the presence of the wall. This ex
plains the results of [6] where the largest time in the 
calculations is smaller than the limiting time after which the 
pressures increase. These remarks are confirmed in Figs. 11 
and 12. Where the variations of the pressure perturbation p 

g . An overall shortening effect of the bubble 

with r are represented for different angles 6, at two times 
(0.914 and 0.949); 0 = 0 corresponds to the direction of the 
wall. We can see that in Fig. 11 the pressure field is smaller 
than that in an infinite medium and is very similar to that 
presented in [6]. However at t = 0.949 (Fig. 12) the pressure 
in the entire field is higher than in the infinite medium case. 

Conclusion 

1. The method of matched asymptotic expansions is seen 
to be successful in describing the nonspherical bubble 
dynamics near a solid wall, including the generated pressure 
field during the bubble collapse. To study more complex 
boundaries one need only change the second member of the 
differential equations solved numerically. 

2. The influence of the initial gas pressure and of its law 
of compression is as important as the proximity of the wall 
(e). 

3. Higher jet velocities are obtained for greater e and 
smaller PL 
collapse time is obtained for intense collapses. 

4. Pressures, orders of magnitude higher than in the 
spherical case, are generated on the nearby wall when the 
bubble is very close to it. 

5. An amelioration of the method can be obtained by a 
closer look at the last stage of collapse. In particular, a change 
in the lengths and the time scales is needed, since the problem 
becomes singular in time at the end of the collapse. 
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D I S C U S S I O N Authors' Closure 

F. G. Hammitt1 

This paper concerning the analysis of the collapse of 
nonspherical bubbles near solid walls, using a method of 
matched asymptotic expansions rather than a full numerical 
treatment of the problem, which is very expensive in machine 
time, is most welcome, and I believe a highly important 
contribution to this extremely complex, and also important 
problem. As the authors suggest, I hope they will have the 
opportunity to carry further this valuable approach to the 
cases of several bubbles in close proximity to each other, and 
also to an elastic rather than rigid wall. Both cases are cer
tainly highly important to the understanding of the actual 
cavitation damage process, and also to the use of elastomeric 
coatings for alleviating damage. 

It is encouraging that they find that their method produces 
reasonably valid results when bubble wall distance is only 
1.5 X original bubble radius, by comparing with more exact 
past numerical treatments (authors' [5-7]). I wonder what is 
the minimum distance ratio for which they feel their method 
could be applied? 

I am happy they they have resolved a previous disagreement 
between our previous treatment (authors' reference [6]) and 
another earlier work (authors' reference [13]), which had 
appeared to disagree. They now conclude that the pressure 
near the wall can be very large indeed under certain con
ditions, which we had not previously predicted (reference [6]). 

Their conclusion that initial gas pressure and its law of 
compression can be more important than wall proximity is 
interesting, and I believe unexpected, since the volume 
collapse ratio is usually not enormous before the generation 
of amicrojet. 

W. E. Lay Auto Lab - North Campus, Mechanical Engineering, The Univ. 
of Michigan, Ann Arbor, Mich. 48109 

Ivany, R. D., and Hammitt, F. G., "Cavitation Bubble Collapse in 
Viscous, Compressible Liquids," Journal of Basic Engineering, Vol. 87, No. 4, 
1965, pp.977-985. 

We very much appreciate Professor Hammitt's comments 
and would like to thank him for giving us the opportunity to 
present an update on the progress made using the method 
described here. We first presented this paper at the ASME 
Symposium on Cavitation Erosion in Fluid Systems, Boulder, 
Colo., June 1981. Since then, the method has proven suc
cessful in studying the nonspherical behavior near a free 
surface [1], and more importantly, has been extended to the 
study of the interaction of a cloud of bubbles [2, 3]. A major 
influence of the collective behavior on the bubble dynamics 
and on the generated pressure field has been shown. We share 
Professor Hammitt's view on the importance of the study of 
elastomeric coatings. Unfortunately, we have not yet had the 
chance to pursue our initial approach [4] of that problem and 
hope to do it soon. 

The matched asymptotic method we have used in this paper 
is valid as long as the bubble radius to wall distance ratio, e, is 
small compared to one. We have pushed the method a little 
too far by applying it to a value of e, of 2/3. The last phase of 
the collapse is the hardest to describe, and depending on the 
bubble gas content and on e, the method fails earlier or later 
in the bubble history. Here we address the last comment of the 
discussant. We believe that the volume collapse ratio before 
the generation of a microjet is a function of both the wall 
proximity and gas content; for a given bubble wall con
figuration, the less noncondensible gas the bubble contains, 
the earlier the microjet forms. Thus, the formation of a 
microjet and of large bubble deformations (limit of ap
plication of the method) is function as much of gas content as 
of bubble wall proximity. 
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On the Skin Friction Coefficient for a Fully Rough Flat 
Plate 

A. F. Mills1 and Xu Hang1 

A comparison of the Prandtl-Schlichting formula for skin 
friction of a fully rough plate with recently obtained ex
perimental data shows an average error of 17.5 percent. It is 
suggested that the reason for this discrepancy is a failure to 
account for the wake component of the velocity profile. The 
integral momentum equation is used to derive a new skin 
friction theory which when compared to the same data gives 
an average error of 2.7percent. A new skin friction formula is 
proposed which is valid over a wide parameter range. 

Nomenclature 

Cf = 
CD = 
ks = 
L = 
u = 

ue = 
V* = 

X = 

y = 
y+ = 

s = 

K = 

V = 

P = 

local skin friction coefficient = T„/Vipu\ 
\/L\oCj-dx, drag coefficient for plate of length L 
equivalent sand grain roughness 
plate length 
streamwise velocity component 
freestream velocity 
(T\V/P)1/2> friction velocity 
streamwise coordinate 
coordinate perpendicular to plate 
yv*/v 
boundary layer thickness, as defined by wake 
velocity component 
von Karman's constant 
kinematic viscosity 

f4 u ( u\ 
\ — 11 )dy, momentum thickness 
J 0 Ue \ UeJ 

density 
wall shear stress 

The need to calculate skin friction for a turbulent boundary 
layer on a flat plate is encountered in many areas of 
technology, e.g., ships, aircraft, and turbines. Widely used 
for this purpose are charts originally calculated by Prandtl 
and Schlichting in 1934, and conveniently found in 
Schlichting's text on boundary layer theory [1], The charts are 
based on the velocity profiles measured by Nikuradse for 
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Angeles, Calif. 90024. Mr. Hang's permanent address is the Wangting Power 
Plant, Shanghai, Peoples Republic of China. 

Contributed by the Fluids Engineering Division of THE AMERICAN SOCIETY OF 
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Division, May 11,1982. 

pipes roughened with uniform sand grains [2]. For the fully 
rough regime (A:/ ~ 60) the charts may be used for other 
types of roughness pattern by invoking the concept of an 
equivalent sand grain roughness: indeed it is in this manner 
that the charts find their widest use since sand grain roughness 
is seldom encountered in practice. For the fully rough regime 
simple interpolation formulae are recommended by 
Schlichting, viz., 

cy= C2.87 + 1.58 log-^-) 
\ ks/ 

C 0 = ( l . 8 9 + 1.621og—) 

(1) 

(2) 

which are claimed to be valid for 102 <L/ks <106 . Also 
White [3] has presented an analysis in which Cf is determined 
using his inner-variable approach and a velocity profile 

1 : / « y + + 5 . 5 - •-/«(1+0.3A:S 
K 

• ) (3) 

which for a fully rough wall and K-
velocity profile, 

= 0.40 recovers Nikuradse's 

u+ =2.5ln © + 8.5 (4) 

while giving a smooth transition between the smooth and fully 
rough regimes. For the fully rough regime White obtains 

- 2 

C/=(l.4 + 3.71og£) (5) 

for x/ks>\00 and claims this result to be equivalent to the 
Prandtl-Schlichting formula to within about 5 percent. 

Recently there has been an extensive investigation into 
turbulent boundary layers of air on surfaces roughened with 
close-packed spheres at Stanford University [4, 5]. In the fully 
rough regime Pimenta et al. [5] obtained skin-friction data in 
the range 750<x/ks <2750, and found deviations from 
equation (1) of up to 25 percent. No reason for the 
discrepancy was advanced. The purpose of this note is to 
show why the Prandtl-Schlichting formula is inadequate in 
this parameter range, and to give a new improved formula in 
its place. 

The shortcoming of the Prandtl-Schlichting and White 
formulas for Cf is that they both ignore the wake component 
of the velocity profile. The fact that the same velocity defect 
law is valid for both smooth and rough wall flat plate 
boundary layers is well known, based on the experimental 
data of, for example, Hama [6]. Pimenta et al. [5] showed 
that the defect law based on Coles' law of wake [7], viz., 

1 
<+ = - _ / „ ©•;H"GS)] » 

was in good agreement with their measured velocity profiles, 

364/Vol. 105, SEPTEMBER 1983 Transactions of the ASME 
Copyright © 1983 by ASME

  Downloaded 02 Jun 2010 to 171.66.16.90. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Comparison of the Prandtl-Schlichting formula and 
the new theory with the skin friction data of Pimenta et al. [5] 

Equat ion (1) Equat ion (10) 

xlks 

758 
1145 
1532 
1919 
2306 
2694 
838 
1226 
1613 
2000 
2387 
2774 

C//2, experiment 

0.00267 
0.00252 
0.00239 
0.00231 
0.00226 
0.00222 
0.00261 
0.00252 
0.00243 
0.00236 
0.00229 
0.00224 

Cf/2 
0.00333 
0.00304 
0.00285 
0.00271 
0.00261 
0.00253 
0.00326 
0.00299 
0.00282 
0.00269 
0.00259 
0.00251 

% error 

24.9 
20.0 
19.2 
17.4 
15.5 
13.8 
24.8 
18.7 
15.9 
14.0 
13.2 
12.1 

Cf/2 
0.00286 
0.00262 
0.00247 
0.00236 
0.00228 
0.00221 
0.00280 
0.00258 
0.00244 
0.00234 
0.00226 
0.00220 

% error 

7.0 
4.0 
3.4 
2.3 
0.8 

-0.3 
7.2 
2.5 
0.0 

-0.8 
-1.2 
-1.8 

for K=0.41 and n = 0.55. The corresponding velocity profile 
in terms of inner variables is, for fully rough walls, 

The use of Nikuradse's result of u+ =8.5 at y = ks implies 
definition of equivalent sand grain roughness such that 
«+=8.5 at y = ks. Schlichting [8] used this definition to 
deduce ks =0.627 times diameter for closely packed spheres, 
which for Pimenta's surface gives ks = 0.19 mm. Checking 
Pimenta's velocity profiles gives a range of u+ (ks) from 8.24 
to 8.95 with a mean of 8.49. Thus ks = 0.79 mm appears to be 
a reasonable characterization of Pimenta's surface. 

The velocity profile may be used to calculate the 
momentum thickness to give 

l = / 3 : 7 8 _ 25̂ 0 y.4i(„e +-.us,. Ue+=^JCf (8 ) 

ks \ue
+ ue

+2J J 

for K = 0.41, n = 0.55. The integral momentum equation is 
Cf/2 = dd/dx: substituting equation (8) and rearranging gives 

^ ^ f ^ ) = e o . 4 i ( „ ( ;
+ - n . i 8 ) / ' ^ -14.03 +1.55«e+) (9) 

due
+ \ksJ \ue

+ / 
which was solved using a Runge-Kutta integration routine, 
with x measured from the virtual origin of the turbulent 
boundary layer. The resulting Cf distribution was curve-fitted 
for convenience as 

(
v- \ -2 .46 

3.476 + 0.707//?--) (10) 

ks / 
which is accurate to within 1 percent in the range 
150 <x/ks < 1.5 x 107. A further numerical integration yields 
the drag coefficient CD which was curve fitted as 

Q,= (2.635 + 0.618//? —J (11) 

Table 2 Comparison of the Prandtl-Schlichting formula for 
skin friction with equation (10) over a large range of x/ks 

lks 

<102 

2 
5 
:103 

2 
5 
C104 

2 
5 
:105 

2 
5 
clO6 

Equation (1) 

0.00560 
0.00463 
0.00368 
0.00313 
0.00269 
0.00223 
0.00195 
0.00172 
0.00147 
0.00131 
0.00118 
0.00103 
0.00093 

Cf/2 
Equation (10) 

0.00459 
0.00386 
0.00313 
0.00269 
0.00274 
0.00197 
0.00174 
0.00155 
0.00133 
0.00120 
0.00108 
0.00095 
0.00087 

% Difference 

22.02 
19.92 
17.74 
16.19 
14.88 
13.31 
12.14 
11.28 
10.23 
9.22 
8.90 
8.07 
7.06 

which is about as accurate as equation (10). Table 1 compares 
equation (10) with the experimental data of Pimenta et al. The 
average absolute deviation for equation (1) is 17.5 percent 
while for equation (10) it is only 2.7 percent. Thus it is con
cluded that the theory underlying equation (11) is in good 
accord with experiment in this parameter range. Table 2 
compares equation (1) and equation (10) over a wide range of 
x/ks. 

To examine the impact of using equation (11) versus 
equation (2) consider a high speed underwater vehicle of 
length 3 m and equivalent sand grain roughness 0.25 mm, 
giving L/ks = 12,000. Equation (11) gives Cfl/2 = 0.00208 
while equation (2) gives 0.00237 which is 14% higher. Since 
skin drag contributes in excess of 80 percent of the total drag 
of such vehicles, such a discrepancy has a significant effect on 
estimates of vehicle speed. 
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LDV Measurements Near a Vortex Shedding 
Strut Mounted in a Pipe1 

Z. D. Husain.2 Reported results reflect a very carefully 
conducted experiment, and data are precise, for which 
authors must be commended. Since these data were not ad
dressing azimuthal effects of the circular pipe, results from 
similar experiments in a rectangular test-section could 
possibly resolve the question on the existence of any 
noticeable three-dimensional or azimuthal influence of this 
flow facility. 

In "Apparatus and Techniques," the authors stated 
"Throughout most of the pipe, the nonlinearity of the 
position was smaller than the length of the measuring volume 
. . . " This statement is vague. Relatively large errors due to 
nonlinearity is expected near the wall, especially at y/D » 
±0.5. Again, those locations are not of major concern to data 
presented here. Hence, defining regions of large errors in the 
probe-volume location could be expressed in terms of y/D. 

Data over y/D < 0 were generated by assuming symmetry 
or antisymmetry (as the case may be), hence lines over that 
region should not be drawn with any data symbol. Plotting 
with symbols over the entire flow field tend to imply that 
actual data were obtained. Again, the same symbol is used for 
all x/D locations, hence symbols are not essential to the plot. 
Please refer to plots by Kovasznay (reference [1]) and Durgin 
and Karlson (reference [2]), where one-half of the plot does 
not have any data symbol because data were not actually 
acquired. 

It is stated that to handle data uncertainty in both time and 
space due to randomness associated with high-Reynolds 
number flows, the velocity power-spectral density was ob
tained to measure different fluctuating-velocity components 
relating to vortices. Since conventional true-RMS meters do 
not distinguish between the random part from the periodic 
part, how did authors measure the random part of the tur
bulence intensity? The total turbulence intensity can be ob
tained from the velocity power spectrum. From Fig. 10, it 
appears that the total turbulence intensity uT is the vector sum 
of the random and two periodic components. A statement 
relating to the actual data acquisition method of different 
fluctuating-velocity components would be helpful. Please 
note that spectral averaging does not resolve the uncertainty 
in space/time randomness. 

Figure 9 is a presentation of typical plot of the power 
spectral density, but has no reference to locations in y/D. I 
presume that the probe volume is near the path of the vortex 
center, because the spectrum shows noticeably large peaks at 
the fundamental vortex shed-frequency. A velocity signal 
which is not exactly sinusoidal in the frequency domain, 
through Fourier decomposition will show peaks at higher 
harmonics of the fundamental. Authors state that the 

By T. T. Yeh, B. Robertson, and W. M. Mattar, published in the June 1983 
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"worst" spectrum in Fig. 9 is at x/D of 0.63. The velocity 
signal at that x/D location is expected to have high energy at 
the fundamental mode in the frequency domain. Hence, 
randomness in strength, shape and size of the vortex along 
with space/time dependence will result in peaks at higher 
harmonics of the fundamental mode in the frequency domain. 
From the controlled excitation study of a circular jet, Zaman 
and Hussain [8] reported nonsinusoidal velocity signals in the 
time domain even when very repetitive vortex structures were 
shed at the exit of an axisummetric jet. Note that velocity 
signals behind a cylinder is also nonsinusoidal (reference [1]). 
Spectra of such velocity signals show peaks at higher har
monics (Zaman and Hassain). Hence, there is nothing wrong 
with the "worst" spectrum in Fig. 9. Velocity signals at 
locations away from the path of the vortex center is not an 
exact sinusoid. Figure 10 showing peaks at the first harmonic 
of the fundamental and associated with decrease in the 
fundamental at y/D~0 and y/D^0.5 is consistent with the 
flow phenomenon. 

Figure 14 shows that with increasing x/D there is a con
tinual decrease in U{/Ub values and increase in u2/Ub values. 
Note also that with increasing distances from the strut, 
alternately shed vortices effectively double the vortex-passage 
frequency, thereby in the frequency domain a noticeable peak 
is observed at the first harmonic of the fundamental. Similar 
velocity signals were reported by Kovasznay (reference [1], 
Fig. 12), and Zaman and Hussain. 

Conditionally sampled data could provide further insight 
into the vortex structure in space and in time domain when 
sampled at different phases of their evolution. 

Additional Reference 

8 Zaman, K. B. M. Q., and Hussain, A. K. M. F., "Vortex Pairing in a 
Circular Jet Under Controlled Excitation. Part I. General Jet Response," J. 
Fluid Mechanics, Vol. 101, 1980, pp. 449-491. 

Note: Definition reads v j = (Ei>„ + v„ ) , second subscript on the right-
hand side of the equation should be "t" and not "n". 

Authors' Closure 

We thank Dr. Z. D. Husain for his discussion. We will 
answer paragraph by paragraph the questions he raised. 

The azimuthal dependence of the incoming flow in our 
facility has been tested by comparing two perpendicular 
profiles at x/D = -0.71. The profiles were both symmetric 
and agreed with each other within better than 0.5 percent 
except within 2mm of the wall, where the agreement was 
within 1 percent. This shows that our facility produces 
axisymmetric flow. Also, profiles of the longitudinal velocity 
were taken along horizontal diameters at x/D = 0.63, 0.83, 
and 3.13 with the splitter plate vertical. Then the strut was 
rotated 90 degrees, and the same profiles were taken along 
vertical diameters with the splitter plate horizontal. The 
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corresponding profiles agreed within better than one percent, 
showing again that the upstream flow from our flow facility is 
axisymmetric. 

The point closest to the wall for which the velocities were 
measured is at y/D = 0.48 and z/D = 0 (with the splitter 
plate horizontal). At this point the nonlinearity in y/D is 
about 0.008 and in z/D about 0.004. At other points where the 
velocities were measured, the nonlinearity in the position 
calibration was too small to be measured. The largest con
tribution to position uncertainty is the approximately 1.5 mm 
x 0.15 mm size of the measuring volume in the 52 mm 
diameter pipe. 

We agree it would have been better to plot symbols only 
where data were actually taken. 

To determine the magnitudes of the periodic velocity 
components, we measured the area under the corresponding 
peak in the power spectrum as described on page 192. The 
level of random signal subtracted was determined by 
averaging 5 data points on each side of the 21 points and 
interpolating linearly between the two averages. 

The spectra of Fig. 9 were taken at y/D = 0.096 (y = 5mm) 
and z/D = 0 for all three values of x/D listed. The 3rd 
harmonic of the velocity signal was smaller than about 1 
percent of the larger of the 1st or 2nd harmonics at all points 
where data were taken. We chose the word "worst" only to 
express this point, not to suggest that anything was wrong. 
Harmonics higher than the third were too small to be 
measured. We agree that periodic signals in general exhibit 
higher harmonics. We would certainty have observed them in 
our experiment if they were larger than the turbulence at that 
frequency. To a good approximation, the only components 
that are there are just the mean, the fundamental, the second 
harmonic, and broadband turbulence. 

As noted on page 194, vortices passing on both sides of the 
centerline cause a maximum in the second harmonic u2 of the 
longitudinal velocity but a zero value for the second harmonic 
i>2 of the transverse velocity on the centerline. By second 
harmonic, we mean the component at twice the frequency of 
the first harmonic or fundamental. 

Interference Between Two Circular 
Cylinders of Finite Height Vertically Im
mersed in a Turbulent Layer1 

M. M. Zdravkovich.2 The authors are to be complimented 
for an excellent and detailed pressure measurement on one of 
two interferring cylinders at i?e = 1.55 x 104. The height to 
diameter ratio of both cylinders was only 3 and the 
thickness of the turbulent boundary layer along the wall on 
which the cylinders were attached was 0.86 of the cylinder 
height. At the base of the cylinders near the ground, the 
turbulent boundary layer presumably rolled down and formed 
a strong horse-shoe eddy. At the free-end, the flow was 
deflected upwards on the upstream side and pressure coef
ficient could not reach the value of one. The extent of these 
two regions probably overlapped for short h/d=2> and it 
should have resulted in a complete suppression of eddy 
shedding in the wakes of both cylinders. This inference seems 
to be supported by the measured values of the base pressure 
coefficient, Cpm being in the range -0.3 to -0.6. These are 
considerably above the values of —1.2 to —1.4 found behind 
the nominally two-dimensional cylinder at the same Reynolds 
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number. The overall drag coefficient of 0.65 is almost half of 
that produced by the nominally two-dimensional cylinder. 
However, the authors did not mention eddy shedding and my 
first question is whether they found that the eddy shedding 
was suppressed for all arrangements tested. 

If my inference about the suppressed eddy shedding is 
correct then the authors demonstration of a qualitative 
similarity of the interference effects between the short finite 
cylinders and nominally two-dimensional ones gives a new 
insight into the phenomena involved. The biased jet in side-
by-side arrangements reappeared between the short cylinders 
despite the absence of eddy shedding and presence of the 
strong horse-shoe eddy and end-effects. The bistable nature of 
that phenomenon was demonstrated in Fig. 10, but single 
values for CD and CL were plotted in Figs. 13 and 14. There 
must have been intermittent occasions when the monitored 
cylinder experienced the jet-switch and produced different 
pressure distribution. My second question to the authors 
concerns the effect of bistable jet swich on the overall CL and 
CD. 

There is another flow instability in slightly staggered 
arrangements when the strong gap flow between the cylinders 
may suddenly cease and result in a discontinuous change of 
CL. This gap flow switch was a prominent feature of the 
interference between the two nominally two-dimensional 
cylinders. The authors chain-dot line CLraax in Fig. 13 is 
located in the region where the gap flow instability should be 
expected. The question is whether similar gap flow switch was 
observed by the authors. 

The tandem arrangements displayed a typical change in 
pressure distribution on the upstream side as seen in Fig. 8(a) 
for s/d=3 and 4. This always produced discontinuous jump 
in CD (reference [10]). This jump, however, is not shown in 
Fig. 14 and the authors comment's will be helpful. 

The effect of Reynolds number was not mentioned in the 
paper. The beautiful flow visualization photographs shown in 
Fig. 10 were obtained at Re about 620. The flow pattern 
should not be expected to be identical for Re = 1.55 x 104 at 
which pressure distributions were measured. The difference of 
two flows is caused not only by the laminar boundary layer 
along the wall, as stated by the authors, but also due to long 
laminar free-shear layers separated from the cylinders. The 
transition in free shear layers at Re = 1.55 x 104 is expected to 
be not further than 0.5D from the separation. The simulation 
of turbulent boundary layers on both cylinders in reference 
[11], was done with the aim of simulating post-critical flow 
regime. However, despite the strong Reynolds number effect 
an extremely valuable qualitative insight can be gained from 
Fig. 10. May I ask the authors what was the height of the 
smoke-wire relative to the height of the cylinders and could 
they show some photographis for y/h = 0.11 and y/h = 0.89? 
The first will reveal three-dimensional flow due to the horse
shoe eddy (as in reference [14]), while the second equally 
intriguing one will show three-dimensional flow around the 
free end. 

Finally the inferred double flow structure by the discusser 
along the height of the short cylinders can be proved or 
disproved by presenting equilift and equidrag lines for local 
sections. The horse-shoe flow structure will strongly affect 
local CD and CL at y/H =0.11 while the free-end effect will 
dominate local CL and CD at y/H= 0.89. The present Figs. 13 
and 14 hide these two separate effects. 

Additional Reference 
14 Taniguchi, S., Sakamoto, H., and Arie, M., "Flow Around a Circular 

Cylinder of Finite Height Placed Vertical in Turbulent Boundary Layers," 
Bull. J.S.M.E., Vol. 24, No. 187, 1981, pp. 37-44. 
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corresponding profiles agreed within better than one percent, 
showing again that the upstream flow from our flow facility is 
axisymmetric. 

The point closest to the wall for which the velocities were 
measured is at y/D = 0.48 and z/D = 0 (with the splitter 
plate horizontal). At this point the nonlinearity in y/D is 
about 0.008 and in z/D about 0.004. At other points where the 
velocities were measured, the nonlinearity in the position 
calibration was too small to be measured. The largest con
tribution to position uncertainty is the approximately 1.5 mm 
x 0.15 mm size of the measuring volume in the 52 mm 
diameter pipe. 

We agree it would have been better to plot symbols only 
where data were actually taken. 

To determine the magnitudes of the periodic velocity 
components, we measured the area under the corresponding 
peak in the power spectrum as described on page 192. The 
level of random signal subtracted was determined by 
averaging 5 data points on each side of the 21 points and 
interpolating linearly between the two averages. 

The spectra of Fig. 9 were taken at y/D = 0.096 (y = 5mm) 
and z/D = 0 for all three values of x/D listed. The 3rd 
harmonic of the velocity signal was smaller than about 1 
percent of the larger of the 1st or 2nd harmonics at all points 
where data were taken. We chose the word "worst" only to 
express this point, not to suggest that anything was wrong. 
Harmonics higher than the third were too small to be 
measured. We agree that periodic signals in general exhibit 
higher harmonics. We would certainty have observed them in 
our experiment if they were larger than the turbulence at that 
frequency. To a good approximation, the only components 
that are there are just the mean, the fundamental, the second 
harmonic, and broadband turbulence. 

As noted on page 194, vortices passing on both sides of the 
centerline cause a maximum in the second harmonic u2 of the 
longitudinal velocity but a zero value for the second harmonic 
i>2 of the transverse velocity on the centerline. By second 
harmonic, we mean the component at twice the frequency of 
the first harmonic or fundamental. 

Interference Between Two Circular 
Cylinders of Finite Height Vertically Im
mersed in a Turbulent Layer1 

M. M. Zdravkovich.2 The authors are to be complimented 
for an excellent and detailed pressure measurement on one of 
two interferring cylinders at i?e = 1.55 x 104. The height to 
diameter ratio of both cylinders was only 3 and the 
thickness of the turbulent boundary layer along the wall on 
which the cylinders were attached was 0.86 of the cylinder 
height. At the base of the cylinders near the ground, the 
turbulent boundary layer presumably rolled down and formed 
a strong horse-shoe eddy. At the free-end, the flow was 
deflected upwards on the upstream side and pressure coef
ficient could not reach the value of one. The extent of these 
two regions probably overlapped for short h/d=2> and it 
should have resulted in a complete suppression of eddy 
shedding in the wakes of both cylinders. This inference seems 
to be supported by the measured values of the base pressure 
coefficient, Cpm being in the range -0.3 to -0.6. These are 
considerably above the values of —1.2 to —1.4 found behind 
the nominally two-dimensional cylinder at the same Reynolds 
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number. The overall drag coefficient of 0.65 is almost half of 
that produced by the nominally two-dimensional cylinder. 
However, the authors did not mention eddy shedding and my 
first question is whether they found that the eddy shedding 
was suppressed for all arrangements tested. 

If my inference about the suppressed eddy shedding is 
correct then the authors demonstration of a qualitative 
similarity of the interference effects between the short finite 
cylinders and nominally two-dimensional ones gives a new 
insight into the phenomena involved. The biased jet in side-
by-side arrangements reappeared between the short cylinders 
despite the absence of eddy shedding and presence of the 
strong horse-shoe eddy and end-effects. The bistable nature of 
that phenomenon was demonstrated in Fig. 10, but single 
values for CD and CL were plotted in Figs. 13 and 14. There 
must have been intermittent occasions when the monitored 
cylinder experienced the jet-switch and produced different 
pressure distribution. My second question to the authors 
concerns the effect of bistable jet swich on the overall CL and 
CD. 

There is another flow instability in slightly staggered 
arrangements when the strong gap flow between the cylinders 
may suddenly cease and result in a discontinuous change of 
CL. This gap flow switch was a prominent feature of the 
interference between the two nominally two-dimensional 
cylinders. The authors chain-dot line CLraax in Fig. 13 is 
located in the region where the gap flow instability should be 
expected. The question is whether similar gap flow switch was 
observed by the authors. 

The tandem arrangements displayed a typical change in 
pressure distribution on the upstream side as seen in Fig. 8(a) 
for s/d=3 and 4. This always produced discontinuous jump 
in CD (reference [10]). This jump, however, is not shown in 
Fig. 14 and the authors comment's will be helpful. 

The effect of Reynolds number was not mentioned in the 
paper. The beautiful flow visualization photographs shown in 
Fig. 10 were obtained at Re about 620. The flow pattern 
should not be expected to be identical for Re = 1.55 x 104 at 
which pressure distributions were measured. The difference of 
two flows is caused not only by the laminar boundary layer 
along the wall, as stated by the authors, but also due to long 
laminar free-shear layers separated from the cylinders. The 
transition in free shear layers at Re = 1.55 x 104 is expected to 
be not further than 0.5D from the separation. The simulation 
of turbulent boundary layers on both cylinders in reference 
[11], was done with the aim of simulating post-critical flow 
regime. However, despite the strong Reynolds number effect 
an extremely valuable qualitative insight can be gained from 
Fig. 10. May I ask the authors what was the height of the 
smoke-wire relative to the height of the cylinders and could 
they show some photographis for y/h = 0.11 and y/h = 0.89? 
The first will reveal three-dimensional flow due to the horse
shoe eddy (as in reference [14]), while the second equally 
intriguing one will show three-dimensional flow around the 
free end. 

Finally the inferred double flow structure by the discusser 
along the height of the short cylinders can be proved or 
disproved by presenting equilift and equidrag lines for local 
sections. The horse-shoe flow structure will strongly affect 
local CD and CL at y/H =0.11 while the free-end effect will 
dominate local CL and CD at y/H= 0.89. The present Figs. 13 
and 14 hide these two separate effects. 

Additional Reference 
14 Taniguchi, S., Sakamoto, H., and Arie, M., "Flow Around a Circular 

Cylinder of Finite Height Placed Vertical in Turbulent Boundary Layers," 
Bull. J.S.M.E., Vol. 24, No. 187, 1981, pp. 37-44. 
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at the height of the two cylinders ylh = 0.44 and the overall
drag coefficients CD of the upstream cylinder in the tandem
arrangement. Each curve has its maximum value at
sld= 1.35-1.5 and rapidly decreases as sid increases, and then
becomes almost constant over sid= 2.0. However, we cannot
find the discontinuous jump in CD which has always occurred
in a two dimensional case.

We didn't investigate the effects of Reynolds number on the
flow around the two cylinders. Figure 10 visualized the flow
patterns around the two cylinders when the wire element was
set horizontallY at the height y 1h =0.5. The flow patterns
around a three dimensional body such as two cylinders cited
in this study are markedly different along its height.
Therefore it is very important to investigate the variation of
the flow patterns with respect to the height of the body. From
this point of view, we present some photographs at the sever~l

heights of the two cylinders in the side-by-side arrangement m
Appended Fig. 2 and the surface flow patterns in the various
arrangements in Appended Fig. 3, respectively.

The three dimensionality of the flow around the two
cylinders causes the different pressure distributions along the
height of the two cylinders, as seen in Fig. 6. We can roughly

Appended Fig. 3 (cont.) Sid = 4.0, Uo = 16 mls

Appended Fig. 3 Surface flow patterns around two cylinders in various
arrangements. sld= 1.5, Uo = 16 mls
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Appended Fig. 1 CD and cpb of the upstream cylinder

Authors' Closure

The aim of this study was to make clearer the time-averaged
fluid forces caused by the interference between the two cir
cular cylinders of finite height. At present, we leave the
measurements of the eddy shedding for the further ex
periment, so that we cannot answer correctly whether (he eddy
shedding was suppressed for all arrangements tested.

In this experiment, we got two values of the pressure on the
back surface of the monitor cylinder, which were caused by
the bistable jet switch in case of the side-by-side arrangement
when sld= 1.2. The coefficients CD and CL in Figs. 13-16
were computed by the lower pressure distributions. These
values formed the continuous curves, as seen in these figures.
The higher values of CD and CL were 0.72 and 0.22,
respectively. However, similar gap flow in the other
arrangements were not measured by Betz type manometer
used in this experiment.

Appended Fig. 1 shows the back pressure coefficients - Cpb

Appended Fig. 2 Flow patterns around two cylinders in side·by·slde
arrangement. d =10 mm, hid =3.5, sid =2.0
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Appended Fig. 4 Local drag coefficient, s/d = 2.0 

0 30 60 90 120 150 180 

0 deg. 

Appended Fig. 5 Local lift coefficient s/d = 2.0 

estimate the trend of the variations in the local coefficient C; 
and CLy from these pressure distributions. Appended Figs. 4, 
5 show the local drag coefficient CDy and the local lift 
coefficient CLy at several heights of the two cylinders in case 
of s/d =2.0. It can be noticed the whole trends of these 
coefficients are almost similar to one another. 
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